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Automated radiotherapy planning is on the verge of transforming personalized cancer

treatment, and it will likely help address the growing global cancer burden. The most

common type of automated planning is knowledge-based planning (KBP), which can

generate treatment plans for radiotherapy without human intervention. In general, KBP

is implemented as a two-stage pipeline that first predicts the dose that should be delivered

to a patient, and then an optimization model converts that prediction into a treatment

plan. Although KBP research is flourishing, it is largely limited to institution-specific

datasets and evaluation metrics, which makes comparing competing approaches difficult.

The purpose of this thesis is to develop state-of-the-art KBP methods and an open

framework for the KBP research community to benchmark new contributions. In this

thesis, we developed the first generative adversarial network for KBP dose prediction,

which outperformed several baselines. Next, we launched the OpenKBP Grand Chal-

lenge, which was the first platform that enabled researchers to compare KBP prediction

methods fairly, and helped democratize KBP research by making it accessible to everyone.

Next, we found that there were interaction effects between the two stages in KBP and

that the choice of both stages can contribute to considerable variations in plan quality.

To explore this further, we developed new plan optimization methods using open data

and the dose predictions from the OpenKBP Grand Challenge. Overall, we improved

KBP methods and promoted more collaboration within the KBP research community.
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Chapter 1

Introduction

Cancer is the leading cause of premature death in 57 countries24 and that number will

likely increase based on estimates that the global cancer burden will grow by 47% between

2020 and 2040.97 Oncologists generally recommend treating cancer via surgery, systemic

therapy, radiotherapy, or a combination of those three modalities. However, each of

those modalities requires significant resources and trained personnel, which limits access

to treatment in resource constrained healthcare systems around the world.6 To reduce

the strain on existing resources in other areas of healthcare, artificial intelligence (AI) has

been implemented to augment human decision making and improve clinical efficiencies,1

and recent clinical trials have demonstrated that AI can be implemented to augment

decision making in radiotherapy.77 The goal of this thesis is to develop AI tools for

radiotherapy and promote more collaboration within the research community to improve

the rate of innovation.

It is estimated that external beam radiotherapy is a recommended treatment for

managing the disease in about half of all patients diagnosed with cancer.16;21;40 This

implies that improving processes related to external beam radiotherapy will have a sig-

nificant impact on a large population of patients. External beam radiotherapy is deliv-

ered by a wide range of mechanisms that include radioactive sources (e.g. Cobalt-60),

1



Chapter 1. Introduction 2

high-energy particle beams (e.g., electron, proton), and high-energy photon beams (e.g.,

three-dimensional conformal radiotherapy, volumetric modulated arc therapy, intensity

modulated radiation therapy (IMRT)). During IMRT, which is the focus of this thesis,

a linear accelerator (LINAC) projects high-energy photons from multiple angles around

a patient (see Figure 1.1) to destroy cancerous tissue while minimizing damage to the

healthy tissue. Treating a patient with IMRT requires a patient-specific treatment plan,

which includes the instructions that a LINAC follows to deliver a patient-specific cancer

treatment. The treatment plan is generated by a complex design process involving mul-

tiple medical professionals and a treatment planning system.

Figure 1.1: A patient lies on a bed as a LINAC rotates around him.

The time required to generate an acceptable patient-specific treatment plan varies

depending on the type of cancer. For example, the median time to generate a prostate

and head-and-neck treatment plan is 7.6 hours and 12.9 hours, respectively.59 Develop-

ing head-and-neck cancer treatment plans are particularly challenging because important

healthy tissue is often adjacent to or consumed by cancerous tissue. Additionally, the

range in ways that head-and-neck cancer presents makes the patient cohort heteroge-

nous58 and contributes to considerable variation between treatment plans.

In this thesis, we develop models with open frameworks to generate treatment plans
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using AI. We focus exclusively on a type of head-and-neck cancer called oropharyngeal

cancer, which occurs in the oropharynx (see Figure 1.2). Our motivation for focusing on

oropharyngeal cancer stems from its complexity. Specifically, an AI tool that performs

well on a complicated site like oropharynx should generalize to simpler sites where treat-

ment plans have less variation between patients (e.g., prostate). We elaborate more on

the details of the treatment planning process in the next section to provide more context

for the contributions of this thesis.

Figure 1.2: An overview of head-and-neck site.

1.1 Intensity modulated radiation therapy

Figure 1.3 summarizes the steps between an oncologist choosing to proceed with an IMRT

treatment and treating the patient. The treatment plan will follow a protocol that defines

the goals for the treatment. To provide context, we will summarize the three primary

components that lead up to treating the patient (i.e., imaging the patient, segmenting

the images, and generating the treatment plan). However, thereafter this thesis will focus

on the process of generating the treatment plan.
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Patient needs IMRT Imaging the patient
Segmenting the

images (contouring)
Generating the
treatment plan

Treating the patient

Focus of thesis

Figure 1.3: Overview of the steps involved in preparing a patient for IMRT.

1.1.1 Patient imaging

A computed tomography (CT) scan is performed to provide clinicians with the images

of a patient’s anatomy. The anatomy images are acquired as a series of two-dimensional

(2D) cross-section images called slices, which are separated by small distances that equate

to the thickness of the slices. Those slices are then stitched together to create a three-

dimensional (3D) representation of the corresponding patient’s anatomy. In that 3D

representation, the anatomy of the patient is discretized into a grid of small volumes

called voxels, which each encase a single CT image pixel within the thickness of its slice.

CT images are essential for radiotherapy because they provide tissue density informa-

tion, which is used to quantify how radiation travels through the patient and calculate

the dose that will be deposited in various tissues from a radiation beam of known in-

tensity. Additionally, CT images provide anatomical information that physicians use

to distinguish between cancerous and non-cancerous tissue. Depending of the type of

cancer, other imaging modalities (e.g., magnetic resonance imaging, positron emission

tomography) may also be used to help the oncologist identify cancerous tissue that is

difficult to ascertain on CT images.

1.1.2 Image segmentation

Next, clinicians draw contours on the CT images to create regions-of-interest (ROIs).

These ROIs are classified as either organs-at-risk (OARs), which are important healthy

structures, or targets, which are cancerous or potentially cancerous tissues. One of the

goals in radiotherapy is to minimize the dose delivered to OARs, which helps to limit

treatment side effects and toxicity to the patient. However, it is inevitable that OARs
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will receive some dose during a treatment, and the acceptable dose level delivered to

each OAR varies based on the radiosensitivity of the structure. The second goal in

radiotherapy is to deliver the dose level prescribed to each target by the oncologist. In

head-and-neck cancer, multiple dose levels are often prescribed to different targets. For

example, the gross disease is generally prescribed the highest dose level, and a much

larger volume that includes lymph nodes at risk for microscopic disease, which can not

be visualized on the CT scan, is prescribed a lower dose level.

Throughout this thesis we will only consider manually drawn contours, however, we

acknowledge that segmenting these images manually is another time consuming step

in the process of preparing a patient for IMRT.59 Currently, there are several groups

developing tools that do segmentation without human intervention using a processes

called auto-segmentation.27 Some of those tools have also been adopted into clinical

practice.93

1.1.3 Generating treatment plans

As mentioned previously, the goals of radiotherapy are to minimize the dose delivered

to healthy tissues and deliver a prescribed dose of radiation to the targets. These goals

are often evaluated by clinicians who inspect the corresponding dose distribution, which

shows how much dose a treatment plan will deliver to every voxel in the patient (see

Figure 1.4(a)). Dose distributions are often consolidated into summary statistics like

dose-volume histograms (DVHs), which show how much dose is delivered to fractional

volumes of each ROI (see Figure 1.4(b)). There are generally specific points along a DVH

that are especially important to consider during the evaluation process. Most notably

there are clinical criteria that put limits on specific DVH points for each ROI (e.g.,

Dmax ≤ 35 Gy is an upper bound of 35 Gy to an OAR, D99 ≥ 66.5 Gy is a lower

bound of 66.5 Gy on 99% of the voxels in a target). These clinical criteria are effectively

institutional guidelines that are based on existing literature and population statistics.
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(b) Sample DVHs

Figure 1.4: A sample treatment plan that is summarized by (a) a slice of its dose distri-
bution and (b) a DVH for an OAR and target where two important DVH points are also
indicated.

A treatment plan is usually generated according to an institutional planning protocol

that is also informed by population statistics. However, since all patients are different

they need personalized treatment plans, which may need to compromise on some guide-

lines in the protocol (e.g., OAR clinical criteria). As a result, a treatment plan is usually

generated by solving a multi-criteria optimization model, which is known as an inverse

planning model, that balances tradeoffs with the guidelines.26 Typically, the tradeoffs

involve increasing the dose to OARs in an effort to achieve acceptable levels of dose de-

livered to the targets. Those goals are quantified using various constraints and a cost

function that sums a series of objective functions that each have an objective function

weight, which is chosen to reflect the relative importance of the corresponding objective

function.

The decision variables in the inverse planning model are related to the intensity

modulation of the beam. At each angle, the LINAC projects a beam with constant

intensity that is shaped into a series of irregular shapes called apertures. The cumulative
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dose that is delivered by each aperture corresponds to the dose distribution delivered by

a treatment plan. Selecting the optimal apertures is a non-convex optimization problem,

and to simplify it practitioners often use fluence map optimization (FMO).26 In FMO, the

beam at each angle is divided into a grid of beamlets, which comprise the fluence map of

the treatment plan. Solving an FMO model returns beamlets with intensities that make

the specified cost function optimal. A second optimization model, called leaf sequencing,

is then used to convert the fluence map into a set of deliverable apertures.98 In this thesis,

we only generate fluence-based plans via FMO and do not do leaf sequencing. However,

to ensure that our plans represent realistic dose distributions we use a sum-of-positive

gradients constraint that makes the fluence-based plans closely resemble plans that are

deliverable by apertures.35

In practice, an inverse optimization model is developed via a process called in-

verse planning where a dosimetrist specifies patient-specific goals for the treatment.

Dosimetrists perform inverse planning using specialized optimization software to iter-

atively tune several parameters and solve the corresponding inverse planning model,

which generates a treatment plan that is subsequently evaluated by an oncologist (see

Figure 1.5).19 The oncologist usually proposes modifications to the plan that require the

dosimetrist to adjust the plan via inverse planning. The total process is labor intensive,

time-consuming, and costly, as the back-and-forth between the planner and oncologist is

often repeated multiple times until the plan is finally approved.59 In this thesis, we use

AI to automate this treatment planning process.

1.2 Knowledge-based planning

The significant manual effort associated with the current treatment planning paradigm,

along with the fact that IMRT plans are generally quite similar for patients with similar

geometries, has motivated researchers to investigate how automation can be used in the
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Dosimetrist Oncologist

Contoured
CT image

Approved plan

Figure 1.5: An overview of the iterative clinical treatment planning process called in-
verse planning. A medical physicist is also often involved in this iterative process but is
excluded in this overview in order to show the most simplified workflow.

planning process.94 A key enabler of automation is known as knowledge-based planning

(KBP), which leverages historically delivered treatments to generate new plans for sim-

ilar patients. Figure 1.6 depicts the two main components of a KBP-driven automated

planning pipeline: (i) a dose prediction model that uses CT-derived patient geometric

features to predict a clinically acceptable dose distribution or its summary statistics (e.g.,

DVH points);5;96;111;112 and (ii) a plan optimization model that converts the prediction

into a treatment plan.7;75;109 The second step is needed because the dose prediction from

the first component does not include delivery instructions (e.g., fluence to deliver dose).

Contoured
CT image

Dose prediction
model

Predicted
clinical dose

Plan optimization
model

Treatment plan

Figure 1.6: An overview a knowledge-based planning pipeline.

1.2.1 Dose prediction models

Dose prediction models predict the amount and location of dose that an acceptable

treatment plan should deliver to a patient. All dose prediction models use machine

learning to “learn” relationships from previously generated high-quality treatment plans,

but the models have changed a lot over the last decade.79 Many of the early models used
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machine learning methods like linear regression,111 principal component analysis,7;113;116

and random forests.74 Those models relied heavily on feature engineering to condense 3D

patient images into lower dimensional features (e.g., overlap-volume histogram).107 More

recently, the field of dose prediction has been dominated by computer vision models,79

and feature engineering is now used to supplement, not replace, 3D patient images.85

The first prediction model that used computer vision was developed in 2017,79;82 and the

work in this thesis was the first to incorporate computer vision models into a full KBP

pipeline to generate treatment plans.71

The motivation for developing dose prediction models has also evolved in the last

decade. Early models were largely developed to help dosimetrists identify achievable

dosimetric objectives (i.e., DVH metrics), which would enable clinics to decrease vari-

ability in planning and increase the overall quality of treatments.46 Dosimetrists could

use these predictive models to estimate when and to what degree it was appropriate to

compromise on some treatment goals or objectives.113 More recently, there is a move to-

wards incorporating dose prediction models into KBP pipelines as an intermediate step

that provide patient-specific parameters for the optimization model.76 A KBP pipeline

recently produced promising results in clinical trials where clinicians selected the KBP

generated plan over a manually generated plan to treat patients in 72% of cases.77

1.2.2 KBP plan optimization models

Optimization models are used to translate dose predictions into treatment plans. The

dominant type of KBP optimization model is dose mimicking, which attempts to recreate

plans that have similar objective values to the dose prediction.76 In general, a practitioner

can choose to optimize over a set of structure-based objective functions, which quantify a

measure of the dose delivered to a single ROI, or voxel-based objective functions, which

quantify a measure of the dose delivered to a single voxel.11 These dose mimicking models

are generally designed as fully-automated processes that generate plans without human
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intervention. As a result, there are no intuitive processes for fixing problems with a KBP

generated plan.

Another type of KBP optimization model is inverse optimization (IO).7 An IO model

estimates the objective function weights that would make the prediction optimal in an

inverse planning model.8 Note that we use the term IO to be consistent with the opera-

tions research community,31 however, it is effectively the reverse of inverse planning in the

radiotherapy community; specifically, inverse planning takes objective function weights

as input to generate a treatment plan, and inverse optimization takes a dose distribution

as input to generate objective function weights. One benefit of IO is that it can be used

as a semi-automated process that generates plans without human intervention and then

enables a human to improve the plan via an intuitive process. Specifically, IO generated

weights can be used to generate a plan via inverse planning, and if the dosimetrist needs

to improve the plan then those weights can be adjusted manually before re-solving the

inverse planning model. In this thesis, we focus mostly on IO models for plan optimiza-

tion, and we also demonstrate that the plans generated by dose mimicking and an IO

process are equivalent under certain conditions.

1.2.3 Evaluating KBP generated plans

No single metric can effectively quantify the quality of a treatment plan.80 The gold

standard for KBP is to have a radiation oncologist evaluate several attributes of the

KBP generated treatment plan before approving it for treatment.77 However, reviewing a

treatment plan is time consuming, and in most research studies it is impractical to subject

each iteration of KBP generated plans to a rigorous review by a radiation oncologist.

Instead, it is common for researchers to define several summary statistics that compare

dose predictions and KBP generated plans to the corresponding clinical treatment plan

(i.e., ground truth or reference plan).44;64 Common types of evaluation metrics involve

clinical criteria and DVHs that radiation oncologists use to evaluate plan quality during
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their plan review process.7;61

Different institutions adopt a wide range of planning protocols.54 This heterogeneity

among institutions has crept into KBP research because most research groups tailor

their methods and evaluation metrics to their institution.7;59 As a result, most models

are evaluated on institutional-specific metrics that are not always widely adopted, which

makes it challenging to compare competing models. Adopting a small set of standardized

metrics to augment institutional-specific evaluation metrics would enable us to better

measure progress in the field. Prior to our work, there were no recommended standardized

metrics to evaluate KBP predictions or plans.13

1.2.4 Datasets

Access to data is a major barrier to knowledge-based planning research, which is domi-

nated by models developed on private datasets.79 Developing models on private datasets

limits the number of KBP researchers to those with access to data, thereby stifling inno-

vation. Additionally, it is difficult to rigorously benchmark methods that are developed

on drastically different datasets (e.g., prostate versus head-and-neck). Open datasets

(e.g., CIFAR)63 are a staple in thriving AI-driven fields that democratize research ef-

forts and enable researchers to evaluate their methods using a common dataset. Prior to

our work, there was no open datasets to develop KBP prediction or plan optimization

methods.13

1.3 Contributions and outline

Incorporating AI tools into radiotherapy is an effective means for improving cancer care,

however, development of these tools is impeded by a lack of standardized metrics and

datasets. The purpose of this thesis is to improve knowledge-based planning techniques

and promote more collaboration within the KBP research community. To achieve this
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purpose we accomplished the following:

1. Developed the first dose prediction models that use generative adversarial networks

2. Implemented the first KBP pipelines that use computer vision and optimization

3. Garnered widespread adoption of standardized metrics for KBP research

4. Published the first open datasets for KBP research

5. Identified interaction effects between the stages in KBP that affect performance

The remainder of this thesis is organized into five self-contained chapters. The first

three chapters focus on dose prediction models and the last two focus more on KBP

optimization models. Each of these chapters is summarized in more detail below.

1.3.1 Dose prediction with 2D computer vision

This chapter was published as “Automated treatment planning in radiation therapy using

generative adversarial networks” in Proceedings of Machine Learning Research, Vol. 85

(Machine Learning for Healthcare), pp. 484-499, 2018.7 This chapter was developed with

significant contributions from Rafid Mahmood. As a result, this chapter closely resembles

Chapter 4 from his thesis.70 My primary contributions were formatting the patient data

for computer vision models, implementing three of the four baseline models, constructing

the optimization models, and evaluating the clinically relevant metrics. Rafid’s primary

contributions were training the neural networks and tailoring this work for a machine

learning audience.

In Chapter 2, we develop the first automated treatment planning pipeline for oropha-

ryngeal cancer that uses a conditional generative adversarial network (GAN)57 to predict

slices of 3D dose distributions as a colored red-green-blue (RGB) heatmap. In contrast

to previous machine learning methods before 2017,46 our approach does not require the
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pre-specification of an extensive set of feature variables for prediction. Instead, our model

learns what features are important to predict clinical quality dose distributions from con-

toured patient images. We compare our approach to several other techniques from the

literature: a query-based method,7 linear regression,7 random forest,75 and a U-Net.82

We demonstrate that our approach outperforms all other models across several clinical

metrics when it is used as the intermediate step in a full KBP pipeline.

1.3.2 Dose prediction with 3D computer vision

This chapter was published as “Knowledge-based automated planning with three-dimensional

generative adversarial networks” in Medical Physics Vol. 47, pp. 297-306, 2020.10

In Chapter 3, we build on our previous work by adjusting our GAN architecture to

predict dose in standard units of gray and as a full 3D dose distribution (i.e., not a

single slice of the distribution). Once again, we use these predictions as input into an

optimization model to produce plans.8 The plans are compared to plans generated using

predictions from two baseline models: 1) 2D-RGB,71 which is the model developed in

Chapter 2 and 2) DoseNet,61 which is based on a model in the literature with a U-Net

style architecture. Additionally, we investigate the impact of multiplicatively scaling

the predictions before optimization, such that the predicted dose distributions achieve

all target clinical criteria. We find that the best performing plans are generated using

predictions from the 3D model that are multiplicatively scaled.

1.3.3 OpenKBP: The open dose prediction challenge

This chapter was published as “OpenKBP: The open-access knowledge-based planning

grand challenge and dataset” in Medical Physics, Vol. 48, pp. 5549-5561, 2021.13

In Chapter 4, we report on an international machine learning competition for dose pre-

diction that we organized called the Open Knowledge-Based Planning Grand Challenge

(OpenKBP) that was sponsored by the American Association of Physicists in Medicine.
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OpenKBP advances KBP research by providing a platform to enable fair and consistent

comparisons of dose prediction methods. To facilitate the Challenge, we publish the first

open dataset and standardized metrics that cater to KBP dose prediction methods. Par-

ticipants in the Challenge use a large dataset to train, test, and compare their prediction

methods, using our standardized metrics, with those of other participants. The Challenge

proceeds in two phases. In the first (validation) phase, teams develop their models and

compare their performance in real time to other teams via a public leaderboard. In the

second (testing) phase, teams submit their dose predictions for an unseen data set and

a final set of winners is determined. The Challenge also provides the first platform that

enables researchers to compare KBP prediction methods fairly, and it helps democratize

KBP research by making it accessible to everyone. We also collect equity, diversity, and

inclusion (EDI) data on the Challenge participants to publish the first set of EDI data

for the KBP research community.

1.3.4 Evaluating complete automated planning pipelines

This chapter was published as “The importance of evaluating the complete automated

knowledge-based planning pipeline” in Physica Medica, Vol. 72, pp. 73-79, 2020, and it

was also selected for the Rising Stars Completion at the International Conference on the

Use of Computer in Radiotherapy.11

In Chapter 5, we evaluate how KBP prediction methods combine with optimization

methods in a two-stage KBP pipeline. Although there have been significant advances

in KBP research, improvements have typically been measured by modifying one stage

while holding the other constant.7;11;76 Whether specific combinations of KBP and opti-

mization models produce superior plans has not been considered in the extant literature.

Thus, we compare the plans generated by four different KBP pipelines that were assem-

bled from all possible permutations of each component from two state-of-the-art KBP

pipelines.11;76 We show that the way in which these two stages combine alters the qual-
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ity of the output treatment plan. We find that state-of-the-art prediction methods when

paired with different optimization algorithms, produce treatment plans with considerable

variation in quality.

1.3.5 OpenKBP: An open framework for plan optimization

This chapter is published as “OpenKBP-Opt: An international and reproducible evalu-

ation of 76 knowledge-based planning pipelines” as a preprint on arXiv.14

In Chapter 6, we compare the performance of four novel KBP plan optimization

models using 19 different prediction models that were developed in the OpenKBP Grand

Challenge. Our plan optimization methods all perform dose mimicking to generate plans

with dose objective values that “mimic” (i.e., closely match) the input dose objective

values, and we demonstrate a clear link between dose mimicking and inverse optimization

methods, which could be used to enable human planners to improve the plans generated

by KBP. We also publish our code and data to make this the first open dataset that caters

to researching KBP optimization methods. We find that many dose prediction methods

can achieve low error, however, optimization often improves upon the predictions and

often minimizes clinically relevant differences between prediction methods. Thus, it is

critical that we improve the optimization stage in KBP to get better utility out of the

existing high-quality dose prediction methods.



Chapter 2

Dose prediction with 2D computer

vision

As outlined in Chapter 1, knowledge-based planning (KBP) is an automated approach

to radiotherapy treatment planning that involves a dose prediction model and an opti-

mization model. In this chapter, we develop a new dose prediction model and compare

it to other recent models. Our new model eschews the previous paradigms of site-specific

feature engineering and predicting low-dimensional representations of the plan, which are

common in earlier dose prediction models. This is the first study that uses a generative

adversarial network (GAN) to predict dose, and it also the first study to compare the

performance of computer vision models in a full KBP pipeline. We compare the perfor-

mance through a series of experiments on a private dataset of 217 oropharyngeal cancer

treatment plans.

2.1 Introduction

External beam radiotherapy is recommended for about half of all patients diagnosed with

cancer.40 During external beam radiotherapy, a linear accelerator (LINAC) outputs high-

energy x-ray beams from multiple angles around a patient to deliver a prescribed dose of

16
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radiation to a set of targets while minimizing dose to healthy tissue. The LINAC deliv-

ers radiotherapy by following the instructions contained in a patient-specific treatment

plan, which is the result of a design process that involves multiple medical professionals

and a treatment planning system. This includes specialized optimization software that

determines the beam characteristics (e.g., aperture shapes for each beam angle, dose

delivered from each aperture) required to deliver the final dose distribution. The opti-

mization model takes as input a set of various dosimetric objectives, constraints, and

other parameters that guide the optimization process. The model outputs a treatment

plan that is subsequently evaluated by an oncologist. The oncologist usually suggests

revisions to the plan, which then requires the dosimetrist (i.e., the practitioner who gen-

erates treatment plans) to re-solve the optimization model using updated parameters.

The total process is labor intensive, time-consuming, and costly, as the back-and-forth

between the dosimetrist and oncologist is often repeated multiple times until the plan is

finally approved.

Contrasting the iterative clinical procedure, knowledge-based planning is a data-

driven approach that learns from historical plans to generate new plans for future pa-

tients. Figure 2.1 depicts the two main stages of a KBP pipeline: (a) a machine learning

model that predicts a clinically satisfactory dose;5;96;111;112 and (b) an optimization model

that generates a deliverable treatment plan.7;75;109 The second step is needed to ensure

the treatment plan produced by the machine learning model satisfies the physical delivery

constraints imposed by the LINAC.

New patient
geometry

KBP
prediction

Predicted
dose

distribution

Optimization
Deliverable

plan

Figure 2.1: Overview of KBP-driven automated treatment planning pipeline.

A major limitation of most existing KBP prediction methods is their reliance on low-

dimensional hand-tailored features derived from patient geometry to predict new dose
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distributions. In contrast, we propose a new paradigm for generating KBP predictions

that automatically learns to predict a 3D dose distribution directly from a CT image.

More specifically, we recast the dose prediction problem as an image colorization problem,

which we solve using a GAN.48 GANs, which have produced impressive results in other

image colorization applications,57;115 involve a pair of neural networks: a generator that

performs a task and a discriminator that evaluates how well the task is performed. In

our application, the generator serves as a dosimetrist that designs a treatment, while the

discriminator plays the role of the oncologist who critiques the generated dose distribution

by comparing it to the real treatment plan. Both neural networks train simultaneously

on historical data, effectively replicating and aggregating the combined knowledge gained

during the iterative manual process used to design clinically acceptable treatments.

In this paper, we develop a novel automated treatment planning pipeline for oropha-

ryngeal cancer that uses a GAN to predict 3D dose distributions. In contrast to previous

machine learning methods, our approach does not require the pre-specification of an ex-

tensive set of feature variables for prediction. Instead, our model learns what features are

important to produce clinically acceptable treatment plans. We apply our KBP method-

ology to a dataset consisting of 26,279 CT images from 217 patients with oropharyngeal

cancer that have undergone radiation therapy. Approximately 60% of these images are

used to train the GAN, which is used to predict high quality dose distributions for the

remaining out-of-sample patients. These predictions are used as input into an optimiza-

tion model to produce deliverable plans. We compare our approach to several other

techniques, including three feature-based machine learning models and a standard con-

volutional neural network (CNN). We demonstrate that our approach outperforms all

other models in achieving several clinically relevant criteria and in matching the clinical

(benchmark) plans.
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Technical Significance We demonstrate the first use of GANs for generating radiation

treatment plans in cancer. We recast KBP prediction as an image colorization problem

for which GANs are known to perform well. Moreover, we provide the first full pipeline

comparison between different KBP prediction methods by optimizing the predicted dose

distribution and comparing the final result to deliverable plans. We find that, in this

setting, our GAN approach outperforms all other methods, including the latest in machine

learning-based KBP approaches, in meeting clinical criteria.

Clinical Relevance Oropharyngeal cancer is one of the most difficult cancers to plan

a treatment for, and as a result, generating deliverable treatment plans is particularly

time consuming.37 Our GAN approach automates the planning approach producing,

on average, plans that are superior to clinical ones in several key metrics. Our site-

independent method suggests similar performance for simpler sites, such as prostate and

stomach cancers, while showing that high-quality oropharynx treatment plans can be

automatically generated.

2.2 Related work

2.2.1 Knowledge-based planning

Many different approaches have been tested for the machine learning component of a

KBP-driven automated planning pipeline. Query-based methods identify previously

treated patients who are sufficiently similar to the new patient, and use the histori-

cally achieved dose metrics as predictions for the new patient.107;108 Another common

approach uses principal component analysis (PCA), in conjunction with linear regression,

to predict dose metrics for new patients.113;116 However, these well-established techniques

only predict two-dimensional dose metrics. Recent research has shown that 3D dose dis-

tribution predictions can also be generated using random forest or neural network-based
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models.76;82;95 Nevertheless, for many of these approaches to work effectively, significant

effort must be spent in feature engineering, i.e., introducing features specific to the cancer

site. Furthermore, some of these approaches compare the predicted dose distributions,

rather than deliverable plans post-optimization, to the clinical plans.

For the optimization phase of KBP, there are two main approaches for turning predic-

tions into treatments: dose mimicking87 and inverse optimization.30 The dose mimicking

model minimizes the L2 loss between the predicted dose distribution and one that satisfies

all physical constraints. Alternatively, inverse optimization (IO) is a methodology that

estimates parameters of an optimization problem from its observed solutions.2 In the RT

context, IO finds parameters, e.g., objective function weights, that allow a deliverable

treatment plan to re-create the predicted dose distribution as closely as possible.30 A

key advantage of inverse optimization is that it better replicates the trade-offs implicit

in clinical treatment plans.29

2.2.2 Generative adversarial networks

GANs are a well-studied class of deep learning algorithms used in generative modeling,

i.e., in the creation of new data.48 Although initially used to artificially generate 2D im-

ages, and later 3D models,110 their success has garnered increasing interest for healthcare

applications. GANs have been used for medical drug discovery,60 generating artificial pa-

tient records,32;43 the detection of brain lesions,3 and image augmentation for improved

liver lesion classification.45

A GAN consists of two neural networks, a generator and a discriminator, working

in tandem. The generator G(·) takes an initial random input z ∼ pz and attempts

to generate an artificial data sample x = G(z) (i.e., the 3D dose distribution). The

discriminator D(·) is a classifier that takes generated and real data samples, and tries

to identify which is which, i.e., D(x) ∈ [0, 1] where 1 suggests the generated sample is

satisfactory. The interaction between the networks can be formalized mathematically as
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a minimax game. If x ∼ pdata is the probability distribution over the real data samples,

then the game is defined as

min
G

max
D

{
V (G,D) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]

}
.

GANs have been proven effective in style transfer problems, where the generator

input z is a data sample corresponding to one style (or characteristic) and the output

x is a mapping to a different style.57;115 For example, style transfer can be used to

transform grayscale images to colored photos,92 in facial recognition for surveillance-

based law enforcement,104 and in 3D reconstruction of damaged artifacts.52 Here, the

generator G(z) learns the mapping between styles that generates samples resembling the

ground truth. Since key structures in the output may be entangled with noise from the

generator, the desired output is often achieved by modifying the original minimax game

with a penalty term on large deviations between the real and generated samples:

min
G

max
D

{
V (G,D) + λEx∼pdata,z∼pz [‖x−G(z)‖1]

}
, (2.1)

where λ is a regularizer that balances the trade-off between learning style and the real

data.

2.3 Methods

We used contoured CT images and clinically acceptable dose distributions from the treat-

ment plans of past oropharyngeal cancer patients to train a style transfer GAN. We then

passed out-of-sample predicted dose distributions through an IO pipeline7 to generate the

final treatment plans. For baseline comparisons, we also implemented several methods

from the literature using the complete pipeline. Figure 2.2 shows a high-level overview

of this automated planning pipeline.
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Figure 2.2: An schematic of our KBP-based automated planning pipeline.

2.3.1 Data

We obtained treatment plans from 217 oropharyngeal cancer patients treated at a single

institution with 6 MV, step-and-shoot, intensity-modulated radiation therapy machine.

All plans were for a prescription of 70 Gy, 63 Gy, and 56 Gy in 35 fractions to the gross

disease, intermediate risk, and elective target volumes, respectively.

For each patient, we identified a set of targets and healthy organs-at-risk (OARs).

Targets were denoted as planning target volumes (PTVs) along with the oncologist-

prescribed dose (e.g., PTV70 corresponds the target with the highest dose prescription).

OARs included the brainstem, spinal cord, right and left parotids, larynx, esophagus, and

mandible. Every voxel (a 3D pixel of size 4 mm × 4 mm × 2 mm) of a CT image was

classified by their clinically drawn contours. All voxels were assigned a structure-specific

color, and in cases where the voxel was classified as both target and OAR, we reverted

to target. All unclassified tissue was left as the original CT image grayscale.

2.3.2 GAN model

We first divided each 3D CT image into 2D slices of 128×128 pixels. The generator used

a single CT image slice to predict the dose distribution along that same plane without

considering the vertical relationship between different slices. This process was repeated
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for every slice until a full 3D dose distribution was produced. Our training set consisted

of all 2D slices from the 3D CT images for 130 patients, totaling 15,657 images. The CT

images from the remaining 87 patients were used for out-of-sample evaluation.

Our GAN learning model was built on the pix2pix style transfer architecture of.57 We

used a U-Net generator that passed a 2D contoured CT image slice through consecutive

convolution layers, a bottleneck layer, and then through several deconvolution layers.

The U-Net also employed skip connections, i.e., the output of each convolution layer

was concatenated to the input of a corresponding deconvolution layer. This allowed

the generator to easily pass “high dimensional” information (e.g., structural outlines)

between the inputted CT image slice and the outputted dose slice. The discriminator

passed a 2D slice of the dose distribution along several consecutive convolution layers,

outputting a single scalar value. In the training phase, the discriminator received one

real and one generated dose distribution before backpropagation. We disconnected the

discriminator after training, at which point the generator only received a contoured CT

slice. We refer the reader to Appendix A.1 for additional details regarding the network

architectures.

We used the loss function given by Equation (2.1) with λ = 90, and trained using

Adam,62 with learning rate 0.0002 and β1 = 0.5 and β2 = 0.999 for 25 epochs. We

used the default Adam settings from,57 as they were proven to be good for a variety

of different style transfer problems. While we swept through various values for λ and

the number of epochs, we found these default settings to be sufficient, with minimal

subsequent improvement. We found it useful to stop training when the loss functions

were roughly equal; if the loss from the l1 penalty fell too low, the GAN began to simply

memorize the dataset. The code for all experiments, along with the parameter settings

is provided at https://github.com/ababier/gancer.

https://github.com/ababier/gancer
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2.3.3 Plan generation

Predicted dose distributions were inputted into an IO pipeline to generate optimized

plans. The IO model determined the weights of a parametric “forward” optimization

model given a predicted dose distribution. The objective of the forward model was to

minimize the sum of 65 objective functions: seven per OAR and three per target. Terms

for the OARs included the mean dose, max dose, and the percentile (0.25, 0.50, 0.75,

0.90, and 0.975) above the maximum predicted dose to the OAR. Similarly, terms for

the target included the maximum dose, average dose below prescription, and average

dose above prescription. The complexity of the KBP-generated treatment plan was

constrained to match the clinical treatment35 where complexity represents a (convex)

surrogate measure for the physical deliverability of a plan. We note that in reality, there

are additional constraints in the IO pipeline that we omit for tractability. Thus, our

notion of a deliverable plan does not include all physical constraints.

Physical parameters for the optimization model were derived from A Computational

Environment for Radiotherapy Research.38 To replicate the clinical plans, all KBP-

generated plans were delivered from nine equidistant coplanar beams at angles 0◦, 40◦,

. . . , 320◦. We used Gurobi 7.5 to solve the inverse and forward optimization problems

associated with the IO pipeline. Additional details of the IO model can be found in Babier

et al. 8

2.3.4 Baseline approaches

We compared our GAN approach to generating predicted dose distributions with several

state-of-the-art techniques. We briefly describe the baseline approaches here.

• Bagging query (BQ): A look-up method identifies patients with similar geome-

tries who have undergone radiation therapy and outputs their doses as predictions.

This approach predicts dose volume histograms (DVHs), i.e., 2D summaries of the



Chapter 2. Dose prediction with 2D computer vision 25

3D dose delivered to specific targets and OARs.7

• Generalized PCA (gPCA): A method combining PCA with linear regression

using patient geometry features. Similar to BQ, this method also predicts DVHs.7.

• Random forest (RF): Predicts dose to each voxel (3D dose prediction) using

ten customized features based on patient geometry (based on McIntosh et al. 76).

Additional details can be found in Appendix A.2.

• U-Net (CNN): Predicts dose to each voxel in 2D slices from a CT image using a

U-Net convolution neural network architecture (based on Nguyen et al. 82).

All baseline predictions were fed into the same IO pipeline as the GAN approach to

ensure a fair comparison between deliverable plans.

2.4 Results

2.4.1 Sample generated dose distributions

We observed that the style transfer function mapping the CT image to the predicted dose

distribution appeared easy to learn. This is because the GAN generated dose distributions

had the hallmarks of a deliverable plan, like the sharp dose gradients that are generated by

individual beams. However, there were subtle deliverability characteristics that the GAN

could not always identify. The optimization step enforced these physical deliverability

constraints to correct for these idiosyncracies. This result can be observed in Figure 2.3,

where five sample slices of a clinical, predicted, and optimized plan are presented.
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Figure 2.3: Sample of slices from a test patient. From top to bottom: contoured CT
image (generator input), clinical plan (ground truth), GAN prediction, and GAN plan
(post optimization).

2.4.2 Clinical criteria satisfaction

We measured plan quality by evaluating how frequently they satisfied the standard clini-

cal criteria for oropharyngeal cancer treatment plans; see Table 2.1. Clinicians commonly

use criteria satisfaction as a metric to evaluate plan quality and approve a treatment plan

after it satisfies a sufficient number of the criteria. Thus, each criterion (one per OAR

and target) was measured on a pass-fail basis depending on whether the mean dose

Dmean, maximum dose Dmax, or the dose to 99% of the volume of that structure D99,

was above or below a given threshold. To facilitate the comparisons, we scaled the GAN

and baseline treatment plans so that their PTV D99 was equal to the PTV D99 of the

corresponding clinical plan.
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Table 2.1: Clinical criteria used to evaluate all plans. Dmean refers to the mean dose,
Dmax the maximum dose, and D99 dose to 99% of the structure.

Structure Criteria

Brainstem Dmax ≤ 54 Gy
Spinal Cord Dmax ≤ 48 Gy
Right Parotid Dmean ≤ 26 Gy
Left Parotid Dmean ≤ 26 Gy
Larynx Dmean ≤ 45 Gy
Esophagus Dmean ≤ 45 Gy
Mandible Dmax ≤ 73.5 Gy
PTV56 D99 ≥ 53.2 Gy
PTV63 D99 ≥ 59.9 Gy
PTV70 D99 ≥ 66.5 Gy

Table 2.2 presents the percentage of the GAN and baseline treatment plans that

satisfied the clinical criteria. The clinically acceptable plans typically violated some

criteria because of the proximity of the targets to the OARs and the complexity of the

head-and-neck site in general. We observed that the BQ and gPCA plans tended to satisfy

PTV criteria more frequently, which suggested that they may recommend delivering a

higher dose to the target relative to the clinical plan. However, they failed to achieve mean

and maximum dose criteria to the OARs (note: there are more than triple the number

of OAR criteria as PTV criteria once all plans are normalized to D99 of the PTV70).

On the other hand, the RF plans appeared to satisfy fewer clinical criteria associated

with the target as compared to the clinical plans. The CNN plans achieved the closest

level of performance to the clinical plans. However, the GAN plans had the best overall

performance among all approaches. They offered a balanced trade-off between the OARs

and targets, and even outperformed the clinical plans on clinical criteria satisfaction.

Table 2.2: Frequency of clinical criteria satisfaction.

BQ gPCA RF CNN GAN Clinical

OAR criteria 61.6% 65.8% 71.5% 72.5% 72.8% 72.0%
PTV criteria 83.5% 85.7% 68.0% 76.3% 81.3% 76.8%
All criteria 67.6% 71.2% 70.7% 73.6% 75.2% 73.3%
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The previous results focused on pass-fail performance with respect to the clinical

criteria. We also examined the magnitude of passing or failing via head-to-head com-

parisons of the GAN/baseline plans to the clinical plans, and between the GAN and

CNN plans (see Figure 2.4). The x-axis in each figure is the difference in Gray (Gy)

between the KBP and the clinical plans for the criterion on the corresponding y-axis.

We found that for each criterion, the majority of GAN plans outperformed their clinical

counterparts by several Gy (Figure 2.4 (e)). This is a significant result given that the

clinical plans were heavily optimized and delivered to actual patients. The BQ, gPCA,

and RF plans displayed substantial variability in performance when compared to the

clinical plan. Consistent with Table 2.2, performance of the CNN plans were closest to

the GAN plans although, as shown in Figure 2.4 (f), the GAN plans were slightly better.
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Figure 2.4: Head-to-head comparisons: (a)–(e) the plans generated from each KBP model
versus their clinical counterparts where positive difference implies the KBP plans were
better; (f) the plans from the GAN versus the CNN. Upper and lower boundaries of each
box represent the 75th and 25th percentiles respectively, and the vertical line in the box
depicts the median. Whiskers extend to 1.5 times the interquartile range.
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Finally, we compared the KBP plans against the clinical plans using the gamma pass-

ing rate (GPR) metric. GPR measures the similarity between two dose distributions on

a voxel-by-voxel basis, computing for each voxel, a pass-fail test. We considered the stan-

dard choice of GPR, i.e., a 3%/3 mm tolerance,68 which roughly means a voxel in the

evaluated dose distribution (KBP) “passes” if there is at least one voxel in the reference

dose distribution (clinical) within 3 mm that receives a dose that is within ±3% of the

reference dose. Table 2.3 summarizes the average GPR achieved over all KBP-generated

plans. A score of 1.0 means that every voxel has passed the criteria; in other words, the

two dose distributions were considered identical (within the tolerance). Overall, we ob-

served that the GAN plans generated dose distributions that most closely resembled the

clinical dose distributions, followed by the CNN, and then the gPCA plans. Notably, the

GAN dose distributions best resembled the clinical dose distribution around the target,

which is of primary importance. The GAN plans performed less well on the OARs, but

this result was expected given the results from Table 2.2, which indicated that the GAN

plans achieved more OAR clinical criteria than the clinical plan (i.e., the GAN was able

to deliver a lower dose to the OARs as compared to the clinical dose distribution).

Table 2.3: Average GPR for each population of KBP plans compared to clinical plans.

BQ gPCA RF CNN GAN

All OARs 0.548 0.584 0.535 0.566 0.549
All PTVs 0.533 0.728 0.503 0.741 0.761
All Structures 0.536 0.669 0.518 0.670 0.675

2.5 Discussion and Future Work

In this paper, we proposed the first GAN-based KBP method to generate radiation

therapy treatment plans. We trained our complete pipeline on 130 patients, tested on 87

out-of-sample patients diagnosed with oropharyngeal cancer, and compared our technique
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with several state-of-the-art planning methods including a query-based approach, a PCA-

based method, a random forest, and a CNN. All methods were evaluated on standard

clinical criteria for plan evaluation (i.e., OARs sparing and target coverage), showing

that the GAN plans outperformed all baseline KBP methods. We also demonstrated

that the GAN plans outperformed the clinical plans by satisfying additional criteria on

OAR dose sparing and target dose coverage. Finally, we used the gamma passing rate, a

standard metric in the radiation therapy literature, to evaluate the similarity of the full

3D dose distribution between the KBP and clinical plans demonstrating that the GAN

plans were the most similar to clinical plans on average. Note that the performance

of automated planning methods should be measured based on their ability to re-create

clinical quality plans with minimal manual effort. Of course, if the auto-generated plans

manage to improve upon the clinical plans, that would be even better.

Our approach eschews the classical paradigm of predicting low-dimensional represen-

tations, or engineering features, by training a generic neural network to learn desirable

dose distributions. Specifically, the GAN recasts KBP prediction as an image coloriza-

tion problem. Moreover, the GAN is trained by mimicking the iterative process between

the dosimetrist and oncologist; the generator network acts as the dosimetrist by de-

signing dose distributions while the discriminator acts as the oncologist by determining

whether the plans are good or bad. The implication is that selecting the appropriate

neural network architecture may be sufficient when creating an automated KBP pipeline

that generates deliverable plans. Further, our approach does not add site-specific feature

variables which suggests that the good performance we observe may not be limited to pa-

tients with oropharyngeal cancer. Finally, since the GAN plans improve upon the clinical

plans, it may be useful to analyze the results to generate useful insights for practitioners.

This work has four major limitations. First, the GAN and U-Net dose prediction

models only learn about 2D relationships in dose distributions. As a result, they are

unable to learn that the dose delivered to adjacent slices in a patient image is often
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similar. A second limitation is that this analysis is limited to a single cancer site (i.e.,

oropharynx). Further studies are needed to explore how GANs perform on different

cancer sites. By adding site labels, we expect that a GAN can learn from the augmented

training set of different cancer sites to better develop plans for specific sites. Third,

this approach requires contoured CT images, which are time consuming to generate via

conventional processes. Future studies could address this limitation by incorporating

an automated image segmentation model (i.e., models that generated contours without

human intervention) into a preprocessing stage that contours unlabelled CT images.

Lastly, these approaches have only been evaluated using summary statistics. Future

studies are required to understand how well these statistics translate into true quality,

which can only be evaluated via physician review.



Chapter 3

Dose prediction with 3D computer

vision

In the previous chapter, we conducted a series of experiments on a dataset of oropharyn-

geal cancer patients to show that our generative adversarial network (GAN) dose predic-

tion model outperforms previous models on several clinical metrics. In this chapter, we

improve the GAN model that was developed in the previous chapter. Out improvements

lead to the first knowledge-based planning (KBP) pipeline uses a 3D GAN to predict a

complete 3D dose distribution (i.e., not a single slice of the distribution that are then

stitched together). Additionally, we investigate the impact of multiplicatively scaling the

predictions before optimization, such that the predicted dose distributions achieve all

target clinical criteria before they are input into the optimization model. We evaluate

the performance on our contributions using a large private data set of 217 oropharyngeal

cancer treatment plans.

3.1 Introduction

The conventional radiation therapy treatment planning process consists of an iterative,

back-and-forth procedure between a treatment planner and an oncologist. The duration

32
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of a single iteration, compounded by the number of iterations that may take place, means

that it can take several days for a treatment plan to be completed.37 Automated treat-

ment planning systems have the potential to replace this conventional approach with

a more efficient operational paradigm that reduces plan generation lead time.88 Hospi-

tals that adopt these techniques should also be better equipped to efficiently produce

high-quality treatment plans for complicated sites117 and serve the growing demand for

radiation therapy.6

Knowledge-based planning is a two-step approach to automated radiation therapy

treatment planning that first predicts a clinically acceptable dose before using optimiza-

tion to convert the prediction into a deliverable plan.8;44;75;109 The prediction component

of the pipeline, referred to as a dose prediction model, typically uses a library of his-

torical treatment plans to learn the dose characteristics of previously delivered plans.

Accordingly, it is essential that this prediction model be accurate as the quality of the

final plans strongly correlate with the quality of the predictions.8

Many KBP prediction approaches have been introduced to either predict a dose distri-

bution or a dose volume histogram (DVH).5;7;44;95;96;111–113;116 While the majority of these

methods use hand-tailored or low dimensional features for prediction, recent advances in

machine learning have spurred the development of KBP methods that predict full dose

distributions using automatically generated high-dimensional features.44;71;74 The most

recent work in this space has focused on neural network-based KBP methods, which

are trained on libraries of historical plans to predict dose for each axial slice separately

(i.e., 2D KBP methods)44;71;84 or all slices concurrently (i.e., 3D KBP methods).61;83

Among the 2D methods, generative adversarial networks have been shown to perform

the best71 while among the 3D methods, DoseNet is considered state-of-the-art.61 It re-

mains an open question as to whether a combination of the two approaches, a 3D GAN,

will achieve even better results.

In this paper, we develop the first 3D GAN-based KBP method, which takes as
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input a 3D CT image and predicts the full 3D dose distribution all at once. We embed

our prediction model in a KBP pipeline for oropharynx treatment planning.7 Similar to

other 3D approaches,61;83 our approach uses a patient’s entire 3D CT image as input and

learns to construct spatial features without human intervention. In doing so, it learns

to produce the entire 3D dose distribution rather than separate 2D dose distributions

for each axial slice. Further, we also investigate the effect of multiplicatively scaling

dose predictions such that they satisfy all target criteria before using them as input to

a fluence map optimization method. We also improve upon a previously developed 2D

GAN approach71 (“2D-RGB”) by specializing the GAN to the radiation therapy context

so that it predicts dose as a scalar value rather than a color representation (i.e., heat

map).

We apply our models to a dataset of clinical radiation therapy plans for 217 patients

with oropharyngeal cancer. Approximately 60% of these clinical plans are used to train

our models, which are then used to predict the dose distribution for the remaining out-of-

sample patients. Next, those predictions are used as input into a fluence map optimization

pipeline to generate treatment plans.8 We compare our models to two notable deep

learning methods, DoseNet61 and 2D-RGB,71 and demonstrate that: (i) 3D GANs are

better suited for KBP than previous state-of-the-art prediction methods; (ii) adjusting

predictions via multiplicative scaling - such that the predictions satisfy all target criteria

prior to fluence map optimization - generally improves the quality of the resulting KBP

plans; and (iii) dose should be represented as a scalar value rather than an RGB heat

map. Finally, we observe that good KBP predictions, after fluence map optimization,

do not necessarily result in the best treatment plans. Thus, we recommend that future

KBP research should report fluence map-optimized performance metrics.
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3.2 Methods and Materials

We use contoured CT images and dose distributions from clinically accepted treatment

plans to train all models in the KBP pipeline. Each KBP model was trained to predict

the dose distribution given a contoured CT image. For testing, we passed out-of-sample

contoured CT images through each of the models to generate dose distributions. These

predictions were then passed through an optimization pipeline8 to generate the final

fluence-based treatment plans. Figure 3.1 shows a high-level overview of this automated

planning pipeline.

Deep learning
KBP models

Contoured
CT images

Clinical
dose

Baselines

2D-dose

3D-dose

Predictions

IO pipeline

Baselines

2D-dose

3D-dose

Plans

Figure 3.1: Overview of the knowledge-based automated treatment planning pipeline.

3.2.1 Prediction Using Generative Adversarial Networks

A GAN consists of two neural networks known as a generator and discriminator.48 We

focus on conditional GANs which, in addition to a Gaussian input, learn to generate dif-

ferent outputs conditioned on known problem-specific characteristics (e.g., CT images).57

Specifically, let z ∼ pz denote a sample from a Gaussian input. The generator network

takes as input z and a CT image c and outputs a predicted dose distribution x = G(z, c).

The discriminator network then takes a CT image and the predicted dose distribution as

input and outputs a “belief” regarding whether the dose distribution is the actual clini-

cal dose (as opposed to artificially produced by the generator). That is, D(x, c) ∈ [0, 1]
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where D(x, c) = 1 suggests the discriminator is confident the dose distribution is the

clinically delivered dose. Both networks are trained iteratively with a single loss function

L(D,G). Letting x ∼ pdata denote the distribution of real delivered plans, we write the

training problem as:

min
G

max
D
L(D,G)

where

L(D,G) = Ez∼pz [log(1−D(G(z, c), c))] + Ex∼pdata [logD(x, c)] + λEx∼pdata,z∼pz [‖x−G(z, c)‖1] .

The above formulation represents the objective for the most common class of con-

ditional GANs used in problems associated with image generation.57;115 By minimizing

the first term in L(D,G), the generator learns to construct dose distributions such that

D(G(z, c), c) = 1. That is, the generator attempts to fool the discriminator into believing

that the generated dose is a real clinical dose. The discriminator adversarially maximizes

the second term in L(D,G) to output D(G(z, c), c) = 0 for z ∼ pz and D(x, c) = 1

for x ∼ pdata, i.e., the discriminator attempts to correctly distinguish between artificially

generated versus clinically delivered plans. The final term in L(D,G) is an l1 loss function

which forces the generated samples to better resemble the ground truth dataset (i.e., the

clinically delivered dose distribution). The hyperparameter λ balances the tradeoff be-

tween minimizing the GAN loss (first two terms) and having images resemble deliverable

plans.

We constructed a generator and a discriminator network using the pix2pix architec-

ture proposed in the canonical Style Transfer GAN.57 The generator possesses a U-net

architecture that passes a contoured CT image through consecutive convolution lay-

ers, a bottleneck layer, and then several deconvolution layers. The U-net employs skip
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connections, i.e., the output of each convolution layer is concatenated to the input of

a corresponding deconvolution layer. This allows the generator to easily pass “high-

dimensional” information (e.g., structural outlines) between the inputted CT image and

the outputted dose. The discriminator takes as input a dose distribution and a CT image

and passes them through several consecutive convolution layers until outputting a single

scalar value between zero and one. We refer the reader to the original Style Transfer

GAN work for full details on the number and size of the convolution and deconvolution

layers in the pix2pix architecture.57

Two GAN models were created; 3D-dose represents our main contribution while 2D-

dose represents a credible benchmark and allows us to ascertain the impact of separate

versus simultaneous axial slice prediction. That is, the “2D” and “3D” designation refers

to whether dose is being predicted for each 2D slice independently (i.e., 128× 128 pixel

images) or the full 3D distribution (i.e., 128×128×128 voxel images). The generator and

discriminator architectures for these GAN models are summarized in Tables VII and VIII

in the Appendix B, respectively. Both models output dose predictions as a single scalar

value rather than a color image. Additionally, they share the same general architecture

(e.g., number of layers and filter sizes) except that 2D-dose uses two-dimensional convolu-

tion and deconvolution filters (i.e., 4×4 kernels) whereas 3D-dose uses three-dimensional

filters (i.e., 4 × 4 × 4 kernels).52 In order to construct a 3D dose distribution using the

2D-dose GAN, we concatenated all outputted axial slices for each patient.

We compared the GAN models to two benchmarks. The first is DoseNet, which is

a state-of-the-art convolutional neural network model with residual network blocks for

predicting dose.61 Like 3D-dose, it simultaneously predicts the entire dose distribution,

but unlike 3D-dose, it is trained with only a generator network. Note that because

code for DoseNet is not publicly available, our implementation recreates the original

model after corresponding with the authors. The second benchmark is 2D-RGB GAN,

which is the state-of-the-art in GAN-based dose prediction.71 This model is identical to
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the original pix2pix network, and therefore, shares a similar architecture as 2D-dose.

However, it outputs a 128 × 128 pixel image with three channels (RGB) for color. To

convert this to a dose distribution, we simply mapped elements in the color vector to

their corresponding scalar dose values.

The generator and discriminator networks in our models were trained iteratively us-

ing gradient descent. After training was complete, the discriminator was disconnected

and the generator was used on out-of-sample CT images. Figure 3.2 summarizes the

difference between how the GANs were trained and tested. In our experiments, we used

the loss function given by L(D,G) with λ = 90, and trained the networks using the

Adam optimizer62 with learning rate α = 0.0002 and β1 = 0.5 and β2 = 0.999. These hy-

perparameters are the default Adam settings and have been used in many style transfer

problems.57

Finding the optimal hyperparameters for KBP is difficult because we primarily eval-

uate the quality of the final plans (which involves solving a computationally expensive

fluence map optimization problem) rather than the KBP predictions. While we use a

consistent set of hyperparameters for all models where possible (e.g., optimizer parameter

settings and regularizer weight), we varied the batch size and number of epochs used to

train each model. Training was performed on a single Nvidia 1080 Ti GPU with 12 GB

RAM and we set the batch size of each model as high as possible to fill the memory. This

ensured that all models were trained with the same computational resources. Moreover,

we varied the number of epochs for each model in order to prevent overfitting. We stopped

training each model when the regularized l1 loss function, λEx∼pdata,z∼pz [‖x−G(z, c)‖1],

fell to 0.5 for the in-sample training data.71 Intuitively, if the l1 loss falls too low (e.g.,

below the adversarial loss), the GAN begins to overfit. This is particularly dangerous

due to the relatively small (within the deep learning context) dataset used for training.

To further validate our stopping rule, we plotted the training and testing loss up to 200

epochs for all models (see Figure 3.5). In all cases, a training loss of 0.5 was roughly the
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point at which the out-of-sample loss also reached a steady state. The code for all experi-

ments with the parameter settings is provided at http://github.com/ababier/gancer.
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Figure 3.2: Overview of the GAN training and testing phases.

3.2.2 Training the GAN

We obtained plans for 217 oropharyngeal cancer treatments delivered at a single institu-

tion with 6 MV, step-and-shoot, intensity-modulated radiation therapy. All plans were

prescribed 70 Gy and 56 Gy in 35 fractions to the gross disease (PTV70) and elective

target volumes (PTV56), respectively; in 130 plans there was also a prescription of 63 Gy

to the intermediate risk target volume (PTV63). The organs-at-risk (OARs) included

the brainstem, spinal cord, right parotid, left parotid, larynx, esophagus, mandible, and

the limPostNeck, which is an artificial structure used to spare the posterior neck. The

geometry of each patient was discretized into voxels of size 4 mm × 4 mm × 2 mm.

The CT images and dose distributions for all 217 treatment plans were converted into

a suitable format for use by the neural networks. The CT images were reconstructed so

that each voxel had RGB channels, which were assigned values according to Table 3.1,

and converted into 128 axial slices of 128× 128 voxels. The images were separated into a

training set of 130 random samples (a total of 16,640 pairs of CT image slices and dose

distributions) and a testing set of the remaining 87 samples for out-of-sample evaluation.

http://github.com/ababier/gancer
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Table 3.1: Colors assigned to each voxel. Voxels that were classified as both OAR and
target were assigned nonzero green and red channel values, respectively.

Structure Red Channel Green Channel Blue Channel

Brainstem 0 125 CT Grayscale
Spinal Cord 0 147 CT Grayscale
Right Parotid 0 190 CT Grayscale
Left Parotid 0 190 CT Grayscale
Larynx 0 233 CT Grayscale
Esophagus 0 212 CT Grayscale
Mandible 0 168 CT Grayscale
limPostNeck 0 255 CT Grayscale
PTV70 255 0 CT Grayscale
PTV63 205 0 CT Grayscale
PTV56 155 0 CT Grayscale
Unclassified 0 0 CT Grayscale
Empty Space 0 0 0

3.2.3 Creating Plans Using Inverse Planning

During out-of-sample testing, predictions produced by the generator were used as input

into a fluence map optimization model with two stages. In the first stage, given a pre-

dicted dose distribution, the objective weights for a standard inverse planning model were

estimated using a parameter estimation technique that has been previously validated in

oropharynx.8 In the second stage, the estimated weights were used in an inverse planning

optimization model to generate treatment plans. The objective minimized the sum of

65 functions: seven per OAR and three per target. In our experiments, objectives for

the OARs included the mean dose, max dose, and the average dose above 0.25, 0.50,

0.75, 0.90, and 0.975 of the maximum predicted dose to the OAR. Objectives for the

target included the maximum dose, average dose below prescription, and average dose

above prescription. The complexity of all generated treatment plans was constrained

to a sum-of-positive-gradients (SPG) value of 55.35 SPG was used since it is a convex

surrogate for the physical deliverability of a plan and the parameter 55 was chosen as

it is two standard deviations above the average SPG.7 The dose influence matrices re-
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quired for the optimization model were derived with A Computational Environment

for Radiotherapy Research.38 Each of the KBP-generated plans were delivered from

nine equidistant coplanar beams at angles 0◦, 40◦, . . . , 320◦. We used Gurobi 7.5 to

solve the optimization model.

We also generated fluence map-optimized treatment plans using a scaling procedure

that multiplicatively increased the entire predicted dose distribution by the smallest

amount to satisfy all target dose criteria. The scaled predictions were then input into

the optimization model. Note that multiplicative scaling does not affect the fairness of

the analysis because the final KBP plans must satisfy the same constraints (e.g., SPG)

as plans generated from the unscaled predictions. To study the full effect of the scaling

step, we generated four additional populations of scaled final plans alongside the initial

four unscaled plans corresponding to 2D-RGB, DoseNet, 2D-dose, and 3D-dose. We refer

to the four scaled KBP plans as 2D-RGB′, DoseNet′, 2D-dose′, and 3D-dose′ respectively.

In these plans, the median scaling factor was 1.00 for the 2D-RGB’ predictions, 1.02 for

both the DoseNet′ and 2D-dose′ predictions, and 1.05 for the 3D-dose′ predictions.

3.2.4 Performance Analysis

We conducted two primary analyses. First, we evaluated the quality of the KBP plans

by computing the fraction of clinical planning criteria that were satisfied. We compared

these results against the performance of the clinical plans. Second, we evaluated the

quality of the KBP predictions by comparing the predicted dose distributions to clinical

dose distributions.

KBP Plan Quality: The quality of the final KBP plans was measured by evaluating

how often they satisfied the clinical criteria presented in Table 3.2. For each class of

clinical criteria, i.e., OARs, targets, and all regions-of-interest (ROIs), which includes

both OARs and targets, we generated confusion matrices to compare the KBP plans

with the clinical plans. We used a one-sided binomial test to determine whether 3D-dose′
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plans passed the same (null hypothesis) or a greater proportion (alternative hypothesis)

of criteria, which were also satisfied by the clinical plans, than the other automated plans;

an analogous test was used over all the criteria that the clinical plans failed.

We then analyzed the organ-specific criteria that was achieved by each clinical plan

to determine whether the corresponding KBP plan also passed that criterion. We again

used a one-sided binomial test to determine whether the proportion of 3D-dose′ plans

satisfying the same criteria as their clinical counterparts across all ROIs was the same

(null hypothesis) or greater (alternative hypothesis) than the other automated plans. For

these and all subsequent hypothesis tests, p < 0.05 was considered significant.

Table 3.2: The planning criteria used for evaluation: D99 is the dose to a fractional
volume of 0.99, Dmean is the mean dose to a structure, and Dmax is the max dose to a
structure.

Structure Criteria

Brainstem Dmax ≤ 54 Gy
Spinal Cord Dmax ≤ 48 Gy
Right Parotid Dmean ≤ 26 Gy
Left Parotid Dmean ≤ 26 Gy
Larynx Dmean ≤ 45 Gy
Esophagus Dmean ≤ 45 Gy
Mandible Dmax ≤ 73.5 Gy
PTV70 D99 ≥ 66.5 Gy
PTV63 D99 ≥ 59.9 Gy
PTV56 D99 ≥ 53.2 Gy

KBP Prediction Quality: Although KBP plan quality is the ideal metric for

evaluating these models, we also measured KBP prediction quality to determine whether

better predictions lead to better final treatment plans. Specifically, we evaluated how

similar the KBP predictions were to their corresponding clinical plans. For every ROI and

every patient, we calculated the average absolute error between the KBP predicted DVH

and the clinical plan DVH, which were plotted in a box plot. We then used a one-sided
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Mann-Whitney U test to determine whether the 3D-dose′ predictions had the same (null

hypothesis) or greater absolute error (alternative hypothesis) than the predictions from

the other KBP models. Finally, we plotted the predicted dose distributions to detect

visual differences between the predictions of each KBP model. We also plotted the loss

function of the training and testing sets to retrospectively validate our stopping rule for

model training.

3.3 Results

KBP Plan Quality

In Table 3.3, we present confusion matrices comparing the quality of the final KBP plans

with the clinical plans. The rows represent KBP performance using each of the eight KBP

approaches while the columns indicate the clinical plans and the performance targets.

Overall, 3D-dose′ plans best replicated the performance of the clinical plans since they

agreed most on what criteria passed and failed (i.e., Pass/Pass and Fail/Fail). Where

they differed, 3D-dose′ plans satisfied five times as many criteria (Pass/Fail) as the clin-

ical plans (Fail/Pass). We also observed that scaling made a substantial difference as

scaled plans outperformed their unscaled counterparts. For example, scaled 3D plans

satisfied 99.5% of all target criteria whereas only 52.3% were satisfied for unscaled 3D

plans. Finally, 2D-dose′ and 3D-dose′ performed the best satisfying 77.0% and 76.6% of

all ROI criteria (i.e., the sum of the appropriate “Pass” rows), respectively.
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Table 3.3: For each KBP approach, the percentage of clinical criteria that passed and
failed as compared to the corresponding clinical plans. The highest percentage of KBP
plan criteria that were also satisfied by the clinical plans are bolded in each column.
p-values from the one-sided binomial test are presented in the last two columns, which
compare the corresponding plans to 3D-dose′ plans.

Clinical plans p-value

OARs Targets All ROIs All ROIs

Pass Fail Pass Fail Pass Fail Pass Fail

2D-RGB Pass 63.4 6.2 45.5 9.8 58.5 7.2
< 0.001 < 0.001

Fail 3.2 27.2 23.2 21.4 8.7 25.6

DoseNet
Pass 63.6 5.3 46.9 8.0 60.3 8.1

< 0.001 < 0.001
Fail 1.4 29.6 21.9 23.2 6.9 24.7

2D-dose
Pass 64.9 7.9 46.9 9.4 60.0 8.3

< 0.001 < 0.001
Fail 1.7 25.5 21.9 21.9 7.2 24.5

3D-dose
Pass 65.8 7.9 43.8 8.5 59.7 8.1

< 0.001 < 0.001
Fail 0.8 25.5 25.0 22.8 7.5 24.7

2D-RGB′
Pass 60.5 4.7 60.3 21.4 60.5 9.3

< 0.001 < 0.001
Fail 6.1 28.7 8.5 9.8 6.7 23.5

DoseNet′
Pass 62.5 4.3 65.6 25.4 63.9 12.1

0.115 0.708
Fail 2.6 30.6 3.1 5.8 3.3 20.7

2D-dose′
Pass 63.1 5.9 67.9 30.4 64.4 12.6

0.315 0.971
Fail 3.5 27.5 0.9 0.9 2.8 20.2

3D-dose′
Pass 63.4 4.6 68.3 31.2 64.7 11.9

— —
Fail 3.2 28.8 0.4 0.0 2.4 20.9

Table 3.4 summarizes the performance of the KBP plans, focusing only on the criteria

that the corresponding clinical plans also passed. The top ten rows mark satisfaction for

each individual criteria. That is, if a clinical plan satisfied a certain criteria, whether

the KBP plan also satisfied that same criteria. Both 3D-dose and 3D-dose′ performed

the best across all OAR and target criteria. In particular, 3D-dose′ achieved the highest

passing rate for every single target criteria. It also achieved the highest passing rate for

every OAR criteria except the larynx and mandible. However, for some regions such as
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the brainstem, esophagus, and PTV63, multiple KBP approaches also yielded the top

result.

Table 3.4: The percentage of KBP plans that satisfied the same clinical criteria as the
clinical plans. The rows under the heading “All” rows summarize the percentage of KBP
plans that satisfied all clinical criteria that were satisfied by the clinical plans. p-values
for the binomial tests using “All ROIs” are presented in the final row, which compare
the corresponding plans to 3D-dose′ plans. The highest percentage of satisfied criteria is
bolded in each row.

Unscaled Scaled

2D-RGB DoseNet 2D-dose 3D-dose 2D-RGB′ DoseNet′ 2D-dose′ 3D-dose′

OARs

Brainstem 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Spinal Cord 100.0 100.0 100.0 100.0 98.9 100.0 98.9 100.0

Right Parotid 94.1 88.2 88.2 94.1 94.1 82.4 88.2 94.1

Left Parotid 63.6 81.8 81.8 81.8 54.5 72.7 81.8 81.8

Larynx 91.8 93.9 89.8 98.8 87.8 85.7 87.8 91.8

Esophagus 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Mandible 84.8 100.0 98.5 98.5 65.2 89.4 84.8 81.8

Targets

PTV70 48.3 45.7 82.8 79.3 75.9 97.8 100.0 100.0

PTV63 100.0 96.0 100.0 94.0 100.0 100.0 100.0 100.0

PTV56 52.2 62.1 15.2 10.9 89.1 89.7 95.7 97.8

Totals

All OARs 80.5 92.0 88.5 94.3 62.1 79.3 78.2 79.3

All Targets 51.7 54.0 52.9 47.1 78.2 92.0 97.7 98.9

All ROIs 42.5 49.4 47.1 43.7 48.3 72.4 75.9 78.2

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.166 0.387 —

In Table 3.4, we also compare the KBP plans to clinical plans over groups of criteria.

Here, we identified all OARs, Targets, and ROIs and recorded a pass for a given KBP plan

only if it met all of the identified criteria, respectively. We found that plans generated

from the scaled predictions performed better than their unscaled counterparts in terms of

satisfying all ROI criteria; we observed the biggest improvement between 3D-dose and 3D-

dose′ (34.5 percentage points). Like all scaled plans, the improvement of 3D-dose′, which
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satisfied the most target criteria (98.9%), was the result of much better target coverage

at the expense of less OAR sparing as compared to the 3D-dose plans, which satisfied

the most OAR criteria (94.3%). Dose encoded as a grayscale image led to an increase

in plan quality best shown by the difference of 27.6% separating 2D-RGB′ and 2D-dose′.

Finally, it was clear that the 3D GAN architecture resulted in large improvements in

prediction quality. That is, 3D-dose′ satisfied criteria more frequently (by 2.3% points)

than 2D-dose′ and outperformed DoseNet′ (by 5.8% points) as it delivered more dose

to the target without sacrificing OARs. Overall, 3D-dose′ achieved the same criteria as

the clinical plans in 78.2% of cases, which was more than any other approach. The last

row in Table 3.4 demonstrates that the proportion of 3D-dose′ plans that satisfied the

same criteria as the corresponding clinical plans was significantly greater (p < 0.05) than

five of the seven alternative algorithms; we cannot reject the hypothesis that 3D-dose′

produced comparable plans to DoseNet′ and 2D-dose′.

KBP Prediction Quality

In Figure 3.3, we present the distribution of average absolute DVH differences between

the predicted and clinical dose over the regions of interest, i.e., the absolute error between

the KBP predictions and clinical plans. The DoseNet predictions had a lower median dose

error (2.2 Gy) than any of the other predictions and dominated all prediction methods

with the lowest median, 25th percentile, and 75th percentile error. Each of the alternative

prediction models had significantly lower error (p < 0.05) than the 3D-dose′ predictions,

which had the highest median error of 3.3 Gy.
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Figure 3.3: The distribution of average DVH differences between KBP prediction and
clinical dose over all ROIs. The boxes indicate median and interquartile range (IQR).
Whiskers extend to the minimum of 1.5 times the IQR and the most extreme outlier.
Asterisks denote predictions with significantly lower error (p < 0.001) than the 3D-dose′.

Figure 3.4 presents the predicted dose distributions corresponding to the 2D-RGB,

DoseNet, 2D-dose, and 3D-dose KBP methods. Note that the 3D and 2D KBP models

predicted distinct dose distributions that differed along the vertical (i.e., longitudinal)

axis. In particular, 3D-dose and DoseNet better learned the vertical relationship be-

tween adjacent axial slices and thus, generated more natural dose predictions across the

longitudinal axis. In contrast, the 2D KBP predictions included more “streaky” and

unrealistic discontinuities in the dose distribution, particularly around axial slices that

were adjacent to the target boundaries. For example, the dose falloff was impossibly

steep in the plans generated using 2D predictions (Figure 3.4(e)), while plans generated

using 3D predictions had more realistic dose gradients (Figure 3.4(f)). Lastly, we note

that DoseNet predicted visually smoother dose distributions than the other models. This

is because it uses an l2 loss function (in contrast to an l1 loss used by the other models)

which in computer vision is known to generate blurry images57.



Chapter 3. Dose prediction with 3D computer vision 48

(a) CT image (b) Clinical plan (c) 2D-RGB prediction

(d) DoseNet prediction (e) 2D-dose prediction (f) 3D-dose prediction

0 Gy 20 Gy 40 Gy 60 Gy 80 Gy

Figure 3.4: The dose distributions for a sample patient over a single CT image (a) of their
clinical plan (b), 2D-RGB prediction (c), DoseNet prediction (d), 2D-dose prediction (e),
and 3D-dose prediction (f).

Finally, we reached a training loss of 0.5 at 50 epochs for 2D-dose and 2D-RGB,

120 epochs for 3D-dose, and 200 epochs for DoseNet. To validate these training duration

decisions, which were based on when training loss fell to 0.5, we performed a retrospective

analysis of the loss function on our training and testing sets at different epochs. Figure 3.5

shows that our stopping rule approximately identified the earliest point where the training

loss continued to decrease but the testing set loss remained fixed, suggesting that beyond

this point the model is simply overfitting to the training data. We emphasize that we

did not base the training duration decision on out-of-sample performance.
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(a) DoseNet loss
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(b) 2D-dose loss
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(c) 3D-dose loss
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Figure 3.5: The regularized l1 loss of the training and testing set.

3.4 Discussion

Although historically, KBP methods have predicted DVHs using hand-tailored features,

there is widespread interest in automatically predicting dose distributions.44;61;71;74 In

this paper, we extend the literature by building a KBP pipeline that automatically gen-

erates treatment plans from CT images. The pipeline consists of two major components:

prediction and optimization. The prediction stage uses a generative adversarial network

to predict dose distributions from a CT image. The optimization stage consists of two op-

timization models, a parameter estimation model that learns objective function weights

from the predicted dose distribution and an inverse planning model that produces the

final fluence-based treatment plans. We demonstrate that our new GAN model produces

treatment plans that are better than those produced by previous state-of-the-art KBP

methods.61;71

Our framework includes two major enhancements that improved performance: 1)

predicting the full 3D dose distribution from 3D CT images using GANs, and 2) multi-

plicatively scaling the KBP predictions prior to optimization.

Predicting the full 3D dose distribution from 3D CT images using GANs.

Whereas the previous GAN KBP method predicted dose to each axial slice independently
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and then stitched the predictions together to form the full 3D dose distribution,44;71;84;95

our 3D GAN was designed to take an entire contoured 3D CT image as input and

generate the corresponding 3D dose distribution as output. Similar to previous 3D KBP

methods,61;83 the 3D GANs better learned the vertical relationship between adjacent

axial slices than its 2D counterparts. Indeed, we observed that the 3D GAN predicted

more realistic dose distributions than the 2D GAN (e.g., Figure 3.4) with smoother dose

gradients across the longitudinal axis. Lastly, we note that 2D-dose′ outperformed 3D-

dose′ on total clinical criteria but the 3D-dose′ plans achieved the same criteria as the

clinical plans more often than the 2D-dose′ plans. We conjecture that some criteria

may need to fail in order to pass the criteria achieved by the clinical plans. The 3D-

dose′ plans make the appropriate trade-offs; they replicate the clinical plan trade-offs

more often than the 2D-dose′ plans which results in a small reduction on overall clinical

criteria satisfaction.

Multiplicatively scaling the predictions before optimization: Multiplicative

scaling greatly enhanced the final KBP plan quality. Scaled KBP plans satisfied the same

criteria as clinical plans 66% more often than unscaled plans; scaled plans also satisfied

11% more criteria than the unscaled plans overall. The idea of scaling predictions prior

to optimization is novel in the KBP literature and is a general tool that can be applied

to other KBP methods. There are three points worth highlighting. First, scaling is

done automatically, just like how our deep learning approach automates high-dimensional

feature selection. Thus, our KBP pipeline remains automated. Second, we believe that

scaling works because it corrects small inaccuracies that may arise when learning the

absolute dose delivered. That is, the GAN seems to be more effective at learning how

dose varies among different tissues rather than learning the exact dose that should be

delivered to a tissue (otherwise, scaling would not make a difference). Third, the scaled

plans achieve better target performance at the expense of OARs, and we suspect that

target performance was easier to achieve by delivering more dose to certain OARs (e.g.,
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larynx, mandible) as compared to their unscaled counterparts.

Finally, a minor enhancement was the representation of dose to each voxel as a scalar,

instead of as an RGB triple. We hypothesized that predicting dose encoded in single value

(i.e., grayscale) would be easier than predicting dose encoded as a 3-channel RGB value

and our experiments confirmed this result. In particular, 2D-dose′ plans satisfied the

same criteria as the clinical plans 74% more often across all ROIs as compared to 2D-

RGB′ plans. The improvement due to this modification is likely because it is much easier

to predict a single value rather than a triplet. Although predicting dose rather than an

image is intuitive from a medical physics perspective, it reflects the fact that computer

vision techniques, while useful in non-imaging applications, need to be appropriately

modified.

In our experiments, we used clinical criteria as the primary performance measure to

evaluate the plan quality of several deep learning architectures. Since it is generally im-

possible to develop plans that simultaneously achieve all clinical criteria—in our dataset

of 217 clinically delivered plans, only 68.4% of criteria were achieved—our primary goal

was to achieve as many criteria as possible. We were also interested in generating plans

that met the same criteria that the original clinical plans achieved; presumably, these

represent the criteria that clinicians originally believed to be the most important. We

believe that an automated planning method that produces dose distributions that satisfy

the same criteria as treatment plans that have already been delivered is more likely to be

clinically implemented. Our best plans across all clinical criteria metrics were 3D-dose′

plans, which were significantly better than the plans generated from prediction methods

in the literature (i.e., 2D-RGB71 and DoseNet61).

Surprisingly, we observe that good KBP predictions with low error (e.g., DoseNet)

do not necessarily lead to the treatment plans with the best performance on clinical

criteria. In particular, five of the seven alternative prediction methods had significantly

lower error than the 3D-dose′ predictions, yet they also produced plans with significantly
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worse clinical criteria satisfaction (i.e., 2D-RGB, DoseNet, 2D-dose, 3D-dose, and 2D-

RGB′). We conjecture that this phenomenon results from predictions with errors that

negatively impact the optimization stage but are masked by standard summary statis-

tics. For example, some prediction models may make several unrealistic tradeoffs (e.g.,

sparing an OAR inside the target while also achieving perfect target coverage) that the

optimization method cannot easily correct. This may be less of a problem for predictions

from the 3D-dose′ model because it was trained with a discriminator, which encourages

that model to make predictions that resemble a full 3D clinical dose distribution (e.g.,

realistic tradeoffs, no unrealistic artifacts) at the expense of slightly less accurate DVH

metrics. In contrast, DoseNet is trained only with a mean-squared-error loss function,

which encourages the model to predict a good average dose distribution rather than a

plausible one because there is no discriminator to detect unrealistic artifacts. This result

also suggests that prediction DVH error does not necessarily correlate well with clini-

cal measures of KBP plan quality, such as clinical criteria satisfaction. Furthermore, it

highlights the importance of reporting fluence map-optimized performance metrics.

There are several reasons why we believe GANs are a good choice for KBP. First, they

have a history of performing well in applications that involve medical images; specifically

in the detection of brain lesions3 and image augmentation for liver lesion classification.45

Second, we found that all of our GAN models performed well inside a KBP pipeline

without significant parameter tuning and architecture modification, both of which are

essential and potentially time consuming steps in conventional GAN implementations.

We attribute this success to the application; the prediction of dose distributions is akin

to the prediction of relatively smooth and uniform images with the same orientation.

Third, in the KBP pipeline, the GAN produces images that are used as input to an

optimization model in order to obtain treatment plans via a traditional inverse planning

procedure. Thus, the GAN learns a simpler style mapping as compared to conventional

applications, and the optimization phase acts as a safety net to correct potential errors.
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Finally, it is interesting to note that the method to train a GAN conceptually mimics the

iterative process between a treatment planner and an oncologist. The generator behaves

as a treatment planner by proposing dose distributions while the discriminator behaves

as an oncologist by determining whether the proposed dose distribution is suitable.

While other pipelines that predict dose directly have used voxel-based dose mimicking

to construct the final plans,76 we chose to do inverse planning using DVH-based objectives

following prediction because it is in line with current clinical practice and is the most

common approach used in the academic KBP literature.7;44;109 We also emphasize that

our method does not use hand-tailored feature engineering (e.g., features derived from

overlap-volume histograms). Thus, as compared to existing KBP methods, we expect our

pipeline to be easier to implement in practice and can result in more predictable results

if custom treatment plans are desired. For example, institutions with specific clinical

guidelines can train a GAN on images they deem indicative of an ideal treatment plan.

In addition, in the future it may be possible that several medical centers combine data

to form a large training set, which should further improve performance.

A limitation of our approach is that the prediction and optimization steps are separate

stages in the overall pipeline. In theory, an integrated model that does both prediction

and treatment plan optimization simultaneously should produce even better results. A

second limitation is that our approach requires a clean, well-structured and high-quality

dataset, where all images need to have a consistent size (in terms of number of pixels),

coloring convention, and orientation. Finally, as with any neural network-based ap-

proach, GAN predictions suffer from a lack of interpretability. It is not straightforward

to understand why the GAN makes certain predictions, effectively rendering it a black

box. Consequently, a treatment planner may have more difficulty using this approach to

understand when and why prediction errors occur.
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3.5 Conclusion

We developed the first knowledge-based automated planning framework using a 3D gener-

ative adversarial network for prediction. Our results based on 217 oropharyngeal cancer

treatment plans demonstrated superior performance in satisfying clinical criteria and

generated more realistic predictions compared to the previous state-of-the-art. Our two

primary contributions to the KBP framework are the generation of full 3D dose predic-

tions using a generative adversarial network and the scaling of dose predictions pre-fluence

map optimization. This allowed us to design high-quality fluence-based treatment plans

without manual intervention.



Chapter 4

OpenKBP: The open dose

prediction challenge

In the previous chapters, we developed new dose prediction models and evaluated their

performance on a large private dataset. However, establishing high-quality benchmarks

in those chapters was challenging because we needed to recreate complex models from

the extent literature, which were also originally developed and evaluated on private

datasets. In this chapter, we develop an open framework for future knowledge-based

planning (KBP) research that fosters a collaborative environment where benchmarking

is straightforward. Our framework involves a publicly available dataset and standardized

evaluation metrics. To promote the adoption of our framework, we organize the first

international competition for dose prediction where models are developed and compared

using our standardized dataset and evaluation metrics.

4.1 Introduction

The increasing demand for radiation therapy to treat cancer has led to a growing focus on

improving patient flow in clinics.6 Knowledge-based planning methods promise to reduce

treatment lead time by automatically generating patient-specific treatment plans, thereby

55
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streamlining the treatment planning process.94 KBP methods are generally formulated

as two-stage pipelines (see Figure 4.1). In most cases, the first stage is a machine learning

(ML) method that predicts the dose distribution that should be delivered to a patient

based on contoured CT images, and the second stage is an optimization model that

generates a treatment plan based on the predicted dose distribution.11;76

Contoured
CT image

Dose prediction
method

Predicted
clinical dose

Plan optimization
method

Treatment plan

Focus of OpenKBP

Figure 4.1: Overview of a complete knowledge-based planning pipeline.

Research into dose prediction has experienced major growth in the past decade,46 in

part due to the growing sophistication of machine learning and optimization methods in

conjunction with advances in computational technology. There are two main branches of

dose prediction methods: (1) those that predict summary statistics (e.g., dose-volume fea-

tures)5;7;113;116 and (2) those that predict entire 3D dose distributions.10;61;71;74;83;95 Both

branches of dose prediction methods use a wide range of methodologies, e.g., linear regres-

sion,7 principal component analysis,113;116 random forest,74 neural networks.10;61;71;83;95

All of this KBP research is performed in close collaboration with radiation therapy clinics

using private clinical datasets that are generated via local planning protocols.46

Development of KBP models is further challenged by the lack of large open datasets

and standardized evaluation metrics. Existing open radiation therapy datasets cater to

optimization25;36 or classification problems (e.g., segmentation, prognosis).33 Researchers

that develop dose prediction models must rely on their own private clinical datasets and

different evaluation metrics, which makes it difficult to objectively and rigorously com-

pare the quality of different prediction approaches at a meaningful scale.46 As a result,

researchers must attempt to reproduce published dose prediction models to benchmark
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their new models via a common dataset and set of evaluation metrics.11;75 In contrast,

open datasets and standardized metrics are staples of thriving artificial intelligence-driven

fields, as evidenced by the uptake of the CIFAR63 and ImageNet91 datasets in the com-

puter vision community over the past decade.

We launched the Open Knowledge-Based Planning (OpenKBP) Grand Challenge to

advance knowledge-based planning by 1) providing a platform to enable fair and con-

sistent comparisons of dose prediction methods and 2) developing the first open dataset

for KBP. Participants of the Challenge used the dataset to train, test, and compare

their prediction methods, using a set of standardized evaluation metrics. The data and

accompanying code-base is freely available at https://github.com/ababier/open-kbp

for KBP researchers to use going forward.

4.2 Methods and Materials

We first describe our process for building and validating the dataset for the Challenge.

We then describe how the Challenge was organized and delivered. Finally, we provide

an analysis of the Challenge results. This study was approved by the Research Ethics

Board at the University of Toronto.

4.2.1 Data Processing

Figure 4.2 depicts our data processing approach at a high level, which consisted of four

steps: (i) data acquisition, (ii) data cleaning, (iii) plan augmentation, and (iv) data

partitioning.

https://github.com/ababier/open-kbp


Chapter 4. OpenKBP: The open dose prediction challenge 58

Raw private
data (n = 217)

Raw public
data (n = 851)
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Low-quality
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Private archive
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(n = 200)
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(n = 40)

Testing data
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Figure 4.2: Overview of the data processing pipeline. n represents the number of patients
at each stage of the pipeline.

4.2.1.1 Acquiring the raw data

We obtained the Digital Imaging and Communications in Medicine (DICOM) files of

217 patients, which we call the raw private data (denoted by Praw), who were treated

for oropharyngeal cancer at Princess Margaret Cancer Center. Each file included a

treatment plan that was delivered from nine approximately equispaced coplanar fields

with 6 MV, step-and-shoot, intensity-modulated radiation therapy (IMRT). Each patient

was prescribed 70 Gy in 35 fractions, with 70 Gy to the high-dose planning target volume

(PTV70), 63 Gy to the mid-dose planning target volume (PTV63), and 56 Gy to the

low-dose planning target volume (PTV56); a PTV63 was only contoured in 130 of the

patients. All plans included CT images, contours for regions-of-interest (ROIs), and the

dose distributions based on a consistent set of planning protocols.

We also retrieved clinical DICOM data for 851 patients, which we call the raw public

data (denoted by Oraw), from four public data sources22;50;102;119 hosted on The Cancer

Imaging Archive (TCIA).33 The data was originally sourced from twelve different insti-

tutions between 1999 and 2014. Each file contained CT images and contours for the

regions of interest (ROIs). This collection of files contained several inconsistencies be-

cause the data originated from different institutions. For example, different institutions

may have employed different dose levels, fractionation schemes, ROI naming conven-

tions, languages (English versus French nomenclature), PTV margins (isotropic versus
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anisotropic margins from clinical target volume (CTV)), and treatment modalities (3D

conformal radiation therapy (3DCRT) versus IMRT).

4.2.1.2 Data cleaning

In order to standardize and improve the homogeneity of the datasets, we employed a

sequence of data cleaning procedures. First, we relabeled all of ROIs according to a con-

sistent nomenclature. For each patient p ∈ Praw∪Oraw, we included organ-at-risk (OAR)

contours for the brainstem, spinal cord, right parotid, left parotid, larynx, esophagus, and

mandible; let Ip denote this set of OARs for a patient p. All other OAR contours were

deleted. Also, an OAR was omitted from Ip if it was not contoured in the clinical plan

(e.g., a patient whose left parotid was not contoured would not have it in the set Ip).

To construct the set of targets Tp, we identified the low-, mid-, and high-dose targets

based on their relative dose levels73 and relabeled them as PTV56, PTV63, and PTV70,

respectively. Any region with overlapping PTVs was relabeled as a single PTV with a

dose-level equal to that of the highest dose-level of those overlapping PTVs.

Next, we modified target contours in the raw public dataset (Oraw) to match the

protocols from the private dataset (Praw). These modifications helped to fix some of the

inconsistencies in contouring (e.g., no PTV margins, anisotropic PTV margins) that were

present in the raw public dataset. Every PTV was expanded to include the voxels within

5 mm of its respective CTV; the PTV was left unchanged in cases where there was no

CTV contour associated with the PTV. Every PTV was also clipped to be no closer than

5 mm from the surface of the patient.

We generated dose influence matrices for each patient in the public dataset Oraw

based on 6 MV step-and-shoot IMRT with nine equispaced coplanar fields at 0◦, 40◦, . . .,

320◦. Those fields were divided into a set of beamlets B that were each 5 mm × 5 mm.

Every patient was also divided into a set of voxels Vp that were downsampled to fill axial

slices of dimension 128 × 128. The relationship between the intensity wb of beamlet b
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and dose dv deposited to voxel v was calculated in MATLAB using the IMRPT library

in A Computational Environment for Radiotherapy Research,38 which we used to form the

elements Dv,b of each patient’s dose influence matrix. The dose to a voxel v was calculated

as:

dv =
∑
b∈B

Dv,bwb, ∀v ∈ Vp, ∀p ∈ P .

To prepare the patient data for deep learning models, we framed each patient in a 128×

128 × 128 voxel tensor in two steps. First, we calculated the weighted average position

of each patient p, using
∑
b∈B

Dv,b as the weight for each voxel v ∈ Vp. Second, we applied

a bounding box centered on that weighted average position with dimensions of 128 ×

128 × 128 voxels. We added zero-padding where necessary to ensure consistent tensor

volumes. Over the course of the data cleaning phase, 390 patients were removed from

the public dataset (Oraw) for a variety of reasons including missing target contours and

issues generating a valid dose influence matrix. No patients were removed from our

private dataset. At the end of the data cleaning step, we had clean private Pclean and

public Oclean datasets consisting of 217 and 461 patients, respectively.

4.2.1.3 Plan augmentation

Next, we generated synthetic plans for each patient in the clean public dataset and only

retained the associated dose distribution. These synthetic plans were generated using a

variation of a published automated KBP pipeline,10 which was trained using the cleaned

clinical plans from our private dataset Pclean. Figure 4.3 illustrates the plan augmentation

process.

The dose prediction model in the KBP pipeline was a conditional generative ad-

versarial network (GAN)57 with the same architecture as the 3D-GAN in Babier et al.

2020.10 It uses two neural networks: (1) a generator that predicts the dose distribution
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Figure 4.3: Overview of the plan augmentation process, which is a two phased approach:
(a) the clean private clinical dataset is used to train the dose prediction method, and
then (b) the trained method is used in a complete KBP pipeline that intakes the cleaned
public data to generate synthetic plans.

for a contoured CT image; and (2) a discriminator that predicts whether the input is a

predicted or clinical dose distribution. We trained the generator to minimize the mean

absolute difference between the predicted and clinical dose distributions, which we regu-

larized with the discriminator to encourage the generator to make predictions resembling

clinical dose distributions. Between each batch update of the generator, we also trained

the discriminator to minimize a binary-cross-entropy loss function. This GAN model

was trained for 200 epochs using the clean private dataset of 217 treatment plans, and it

was implemented in Tensorflow 1.12.3 on a Nvidia 1080Ti graphic processing unit (GPU)

with 12 GB of video memory.

As part of the plan optimization, we added seven optimization structures to each

patient in the public dataset to encourage high-quality synthetic plans. All of these

optimization structures are based on structures that were used to optimize the plans in

our private clinical dataset. These structures were not included in the final Challenge

datasets. The first optimization structure was called limPostNeck, which is used to limit

dose to the posterior neck. The limPostNeck includes all of the non-target voxels between

the posterior aspect of a 3 mm expansion of the spinal cord and the patient posterior;

there were 12 cases where no spinal cord was contoured where we extended the brainstem

inferiorly to approximate the spinal cord to make the limPostNeck. All spinal cord and

target voxels were removed from the limPostNeck. The other six optimization structures
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were PTV rings, which we added to encourage high dose gradients around the PTVs.

We used 2 mm and 6 mm rings that include voxels within 0 mm to 2 mm and 2 mm to

6 mm of the PTV, respectively. Any overlap between rings was eliminated by removing

voxels in those overlapping regions from the ring of PTV with the lower dose-level. All

target voxels were also removed from the rings.

The plan optimization method was a two-stage approach to inverse planning.8 In the

first stage, we estimate the objective function weights for a conventional inverse planning

model that makes a predicted dose distribution optimal. In the second stage, we use the

estimated weights and solve the inverse planning model to generate a synthetic treatment

plan. The objective of the planning model was to minimize the sum of 114 functions:

seven per OAR, three per target, and seven per optimization structure. The functions

for each OAR evaluated the mean dose; maximum dose; and average dose above 0.25,

0.50, 0.75, 0.90, and 0.975 of the maximum predicted dose to that OAR. The functions

for each target evaluated the mean dose, maximum dose, average dose below the target

dose level, and average dose 5% above the target dose level (e.g., average dose above 73.5

Gy in the PTV70). The functions for each optimization structure were the same as the

OAR functions. To ensure that all plans had a similar degree of fluence complexity, all

synthetic plans were constrained to a sum-of-positive-gradients (SPG) value of 65.35 Both

optimization models were solved in Python 3.6 using Gurobi 9.0.1 (Gurobi Optimization,

TX, US) to generate a dose distribution d̂p for each patient in the clean public dataset.

We used Algorithm 1 to correct or remove low-quality plans that were generated by

our plan augmentation process (i.e., the process in Figure 4.3). The algorithm curated

a set of patients Oaug with high-quality dose distributions ŝp, which were based on the

dose distributions d̂p for the plans of patients in the clean public dataset Oclean. The

algorithm retained any patients that had plans with a high-dose target that received

a higher mean dose or 1st percentile dose (Dr
99) than the mid-dose or low-dose targets

(line 4). The entire dose was then multiplicatively scaled so that maximum dose to
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the high-dose target DPTV70
max (ŝp) was no lower than the lowest maximum dose (DPTV70

max )

observed in the plans of the patients from our clean private dataset Pclean (line 5). For

each instance where we scaled dose by a constant factor, we also scaled the dose by a

random factor ε that was sampled from a uniform distribution between 1.00 and 1.05

(i.e., ε ∼ U(1.00, 1.05)) for two reason: (1) we did not want participants to learn a strict

cutoff and (2) strict cutoffs are unrealistic. Next, we reduced the dose ŝp so that, for

each ROI r ∈ Ip ∪ Tp, it delivered a maximum dose Dr
max, mean dose Dr

mean, and dose to

99% of voxels Dr
99 that was lower than the respective upper bound observed in the plans

from our private clinical dataset (line 8). We denote the highest value observed in the

clinical plans with a bar (e.g., D
r

c for a criteria c and ROI r). Lastly, a patient p was

added to Oaug if that patient’s respective dose ŝp had a maximum dose to the high-dose

target that was between the lower and upper bounds that we observed in our private set

of clinical plans (line 10). The final size of Oaug was 340.

Algorithm 1: Improve low-quality plans where possible and construct the set
of public patients with high-quality synthetic plan dose distributions ŝp.

1 Oaug ← {}
2 for p ∈ Oclean do

3 ŝp ← d̂p
4 if DPTV 70

mean (ŝp) ≥ Dt
mean(ŝp) or DPTV 70

99 (ŝp) ≥ Dt
99(ŝp), ∀t ∈ Tp then

5 ŝp ← ŝp ×max(1, DPTV70
max /DPTV 70

max (ŝp)× ε ∼ U(1.00, 1.05))
6 for r ∈ Ip ∪ Tp do
7 for c ∈ {max, mean, 99} do

8 ŝp ← ŝp ×min(1, Dr
c(ŝp)/D

r

c × ε ∼ U(0.97, 1.00))

9 if DPTV70
max > DPTV 70

max (ŝp) > D
PTV70

max then
10 Oaug ← Oaug ∪ {p}

4.2.1.4 Validation of final competition datasets

We evaluated the distribution of synthetic dose ŝp quality over every patient p ∈ Oaug

by comparing it to the distribution of the clinical dose quality over every patient p ∈
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Pclean. We measured quality using the set of DVH criteria used in the Challenge. The

distribution of DVH criteria over the population of synthetic doses and clinical doses was

visualized with a box plot for each set of criteria. For each of the DVH criteria, we used

a one-sided Mann-Whitney U test to determine whether the synthetic doses were inferior

(null hypothesis) or non-inferior (alternative hypothesis) to the clinical doses, based on

an equivalence interval of 2.1 Gy (i.e., 3% of the high-dose level).4 Lower values were

better for Dmean, D0.1cc, and D1; higher values were better for D95 and D99. For these

and all subsequent hypothesis tests, P < 0.05 was considered significant.

The final public dataset Oaug was randomly split into training Otrain, validation Oval,

and testing Otest datasets with 200, 40, and 100 patients, respectively. Every patient

in these datasets had a synthetic dose distribution (ŝp), CT images, structure masks,

feasible dose mask (i.e., voxels v ∈ Vp such that
∑
b∈B

Dv,b > 0), and voxel dimensions.

This data was released to the participants in phases as described in the next section. A

detailed description of the data format and files is given in Appendix C.1.

4.2.2 Challenge Description

OpenKBP was hosted as an online competition using CodaLab (Microsoft Research, Red-

mond, WA). Participants could compete in the Challenge as a member of a team or as

individuals (i.e., a team of one). The Challenge proceeded in two phases. In the first

(validation) phase, teams developed their models and compared their performance in

real time to other teams via a public leaderboard. In the second (testing) phase, teams

submitted their dose predictions for a new unseen dataset, and we compared their per-

formance to other teams via a hidden leaderboard to determine the final rankings for the

Challenge.
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4.2.2.1 Challenge timeline

The Challenge took place over four months in 2020. Individuals could register to par-

ticipate in the Challenge anytime after it started on February 21, 2020, which is also

when the training and validation data was released to start the first (validation) phase

of the Challenge. Three months later, on May 22, 2020, the testing data was released to

start the second (testing) phase of the Challenge, which ended ten days later on June 1,

2020. The final competition rankings (based on testing phase performance) were released

four days later on June 5, 2020. The Challenge also coincided with the beginning of the

COVID-19 pandemic.41 As a result, we extended the validation phase to accommodate

for the challenges posed by the pandemic. The result was about a one-month delay

compared to the originally planned timeline.

4.2.2.2 Participants

OpenKBP was designed with a view towards having a low barrier to entry. Registration

was free and open to anyone. We also offered comprehensive instructions to set up free,

high-quality compute resources via Google Colab (Google Research, US), for those teams

who did not have access to sufficient computational resources otherwise.28

To understand the make-up of the OpenKBP community, we collected demographic

information from every participant via a two-part registration survey (see Appendix C.2).

The first part of the survey, which was mandatory, collected professional information in-

cluding their past KBP research experience, primary research area, and academic/industry

affiliations. The second part of the survey, which was optional, collected equity, diversity,

and inclusion (EDI) data including how participants self-identify in terms of gender, race,

and disability status, using terminology from the United States Census Bureau.
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4.2.2.3 Evaluation metrics

Teams predicted dose distributions or dose-volume histograms for a set of patients and

submitted those predictions to our competition on CodaLab. For each patient p, we com-

pared the submitted prediction sp to the corresponding synthetic plan dose distribution

ŝp via two error measures (1) dose error, αp, which measures the mean absolute difference

between a submission and its corresponding synthetic plan (i.e., mean absolute voxel-by-

voxel difference in dose), and (2) DVH error, βrp,c, which measures the absolute difference

in DVH criteria between a submission and its corresponding synthetic plan. The dose

error αp was chosen as a general measure of prediction quality that is not radiation ther-

apy specific. It was only used to evaluate dose distributions (i.e., not DVH submissions),

and it is calculated as

αp =
||sp − ŝp||1
|Vp| , ∀ p ∈ Oval ∪ Otest. (4.1)

The DVH error βrp,c was chosen as a clinical measure of prediction quality that is

radiation therapy specific. It involves a set of DVH criteria Ci and Ct for each OAR

i ∈ Ip and target t ∈ Tp, respectively. There were two OAR DVH criteria: Di
mean,

which is the mean dose received by OAR i; and Di
0.1cc, which is the maximum dose

received by 0.1cc of OAR i. There were also three target DVH criteria: Dt
1, Dt

95, and

Dt
99, which are the doses received by 1% (99th percentile), 95% (5th percentile), and 99%

(1st percentile) of voxels in target t, respectively. The DVH error was used to evaluate

both dose distribution and DVH submissions, and it is calculated as

βrp,c = |Dr
c(sp)−Dr

c(ŝp)| , ∀ c ∈ Cr, ∀ r ∈ Ip ∪ Tp, ∀ p ∈ Oval ∪ Otest. (4.2)

We chose to make both error metrics absolute differences to reward models that learn

to make realistic dosimetric trade-offs, as opposed to signed differences that may reward
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unrealistic dosimetric trade-offs (e.g., predict low dose to an OAR that is unachievable).

This is critical because prediction models that make unrealistic trade-offs generally per-

form worse than models that make realistic trade-offs in full KBP pipelines.7

Building on these error metrics, we scored submissions using dose score Ah and DVH

score Bh. Both scores are a variation of mean absolute error (MAE). The dose score is

the mean dose error over all patients in a hold-out set (i.e., Oval or Otest):

Ah =
1

|Oh|
∑
p∈Oh

αp, ∀ h ∈ {val, test}. (4.3)

The DVH score is the mean DVH error over all criteria from the patients in a hold-out

set:

Bh =
1∑

p∈Oh

∑
r∈Ip∪Tp

|Cr|
∑
p∈Oh

∑
r∈Ip∪Tp

∑
c∈Cr

βrp,c, ∀ h ∈ {val, test}. (4.4)

Using those scores, we ranked all of the submissions to the Challenge in two streams: (1)

the dose stream where the team with the lowest (i.e., best) dose score won, and (2) the

DVH stream where the team with the lowest (i.e., best) DVH score won.

4.2.2.4 Validation phase

At the start of the validation phase, the full training dataset Otrain of 200 patients was

released, and the teams used that data to train their models. An out-of-sample validation

dataset Oval, which included data for 40 patients without synthetic plan dose, was also

released for teams to validate the out-of-sample performance of their models. Predictions

made on the validation dataset were submitted directly to our competition on CodaLab

where they were scored in the cloud using the held-back synthetic plan dose. The resulting

scores populated a public leaderboard, but they were not used to determine the winners

of the Challenge.
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4.2.2.5 Testing phase

The testing dataset Otest, which included data for 100 patients without synthetic plan

dose, was released at the start of the testing phase. Teams used the models they developed

during the validation phase and made predictions on this new unseen testing dataset.

Similar to the validation phase, all predictions were submitted to our competition on

CodaLab where they were scored in the cloud using the held-back synthetic plan dose.

However, the resulting dose and DVH scores populated the testing leaderboard that we

kept hidden until the competition finished. The team that performed best on the testing

leaderboard with respect to the dose and DVH score was the winner of the dose and DVH

stream, respectively. Teams that submitted to the testing leaderboard also responded to

a model survey (see Appendix C.2) to summarize their models.

4.2.3 Analysis of Challenge Outcomes

We conducted four analyses. First, we summarized the demographics of the participants.

Second, we evaluated the aggregate improvements made by the teams over the course of

the validation phase. Third, we compiled and analyzed the final results from the testing

phase. Fourth, we summarized common modeling techniques that were employed by the

participants.

4.2.3.1 Participant information

We examined the registration information of all participants and calculated summary

statistics for primary research area, past KBP research experience, country of work/study,

and EDI data. We compared our aggregated EDI data to comparable data for the

population of people who are employed in science and engineering (S&E) in the United

States (US)81 and the general US population.99
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4.2.3.2 Performance over validation phase

As a retrospective analysis, we evaluated the aggregate improvement of all teams over the

validation phase to measure their progress throughout the Challenge. We plotted the dose

and DVH score against a relative measure of progress towards their final model, which we

call the normalized submission count (NSC). The NSC is equal to the cumulative number

of submissions a team made up to a certain point in time divided by the total number

of submissions made in the validation phase. For example, if a team made 100 total

submissions, the score at NSC = 0.5 represents that team’s best recorded performance

after their 50th submission. For each team, we recorded their best cumulative dose and

DVH score in increments of 0.05 NSC. At each increment we plotted the average and

the 95% confidence interval of those scores over all teams that made more than 20 total

submissions.

4.2.3.3 Final results in testing phase

We used a one-sided Wilcoxon signed-rank test to determine whether the set of predic-

tions of the best team in each stream had the same (null hypothesis) or lower (alternative

hypothesis) error (i.e., αp and βrp,c) than each set of predictions submitted by the other

teams. To visualize the range of expected error differences, we plotted the difference in

dose error over all patients (n = 100) and the difference in DVH error over all DVH

criteria (n = 1783) between the winning submission and the runner-up submissions, for

the dose stream and DVH stream, respectively.

As a retrospective sensitivity analysis, we evaluated the submissions according to

an alternative scoring function with squared error terms (i.e., α2
p and βrp,c

2) instead of

absolute error terms (i.e., αp and βrp,c) to determine if the final competition standings

would have changed. We refer to the competition and alternative scores as MAE-based

and mean squared error (MSE)-based, respectively. As a quantitative measure of the

alignment between the two ranking methods, we evaluated the rank-order correlation
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between the rankings for the MAE-based and MSE-based scores via Spearman’s rank

test.

4.2.3.4 Common modeling decisions

Finally, we present a summary of the model survey information that teams submitted

during the testing phase. We present common modeling choices (e.g., model architec-

tures), hardware, and software that teams used. Lastly, we present a set of techniques

that we believe are generalizable to most dose prediction frameworks, based on what

teams commonly employed.

4.3 Results

4.3.0.1 Validation of final competition datasets

Figure 4.4 compares the quality of the public synthetic dose distributions to the private

clinical dose distributions. The box plots in the top and bottom row summarize the

performance across OAR and target DVH criteria, respectively. The public synthetic

doses were non-inferior (P < 0.05) to the clinical doses on 19 of the 23 criteria. For the

remaining four criteria, the synthetic dose was 2.1 Gy worse on average than the clinical

dose (3.7% average relative difference). While the synthetic doses were not a perfect

replication of the clinical doses, they are sufficiently close to representing clinical dose

distributions for the purpose of this Challenge and future research that leverages this

dataset.
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Figure 4.4: The distribution of DVH criteria from the private clinical dose and the public

synthetic dose is plotted, and the corresponding P -values for each criterion are on the

right axes. The boxes indicate median and interquartile range (IQR). Whiskers extend

to the minimum of 1.5 times the IQR and the most extreme outlier.

4.3.0.2 Participant information

Table 4.1 summarizes the participation in each phase of the Challenge. Overall, 195

people registered to participate, and 73 participants were active during the validation

phase. A total of 1750 submissions were made to the validation phase, which is an

average of 40 submission per team. There were 28 unique models submitted in the

testing phase.
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Table 4.1: Participation throughout each phase of the Challenge.

Registration Validation Testing

Total participants 195 73 54

Total teams 129 44 28

Number of submissions — 1750 28

Table 4.2 summarizes the participants’ past KBP experience and primary area of

research. Interestingly, 61.5% of participants had no prior KBP experience and less

than half (42.6%) identified medical physics as their primary area of research. Machine

learning researchers constituted the majority (50.3%) of the participants, and only about

one third (33.3%) of those researchers had prior KBP experience.

Table 4.2: Distribution of participants by primary research area (rows) and whether they
have past KBP research experience (columns).

KBP Experience

Primary Research Area Yes No Total

Machine Learning 16.9% 33.3% 50.3%

Medical Physics 17.9% 24.6% 42.6%

Optimization 2.1% 2.6% 4.6%

Other 1.5% 1.0% 2.6%

Total 38.5% 61.5% 100.0%

Table 4.3 presents the proportion of participants by country of work or study. In

total, 28 different countries were represented in the Challenge. The three countries with

the most participants were the United States (32.8%), China (17.4%), and India (11.3%).

Each of the other 25 counties that were represented had less than 5.1% of the participants.
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Table 4.3: The proportion of participants based on country of work or study.

Australia 2.1% Colombia 4.1% Malaysia 0.5% Sudan 0.5%

Austria 2.1% Croatia 0.5% Netherlands 1.0% Sweden 1.5%

Bangladesh 0.5% Finland 2.1% Pakistan 1.0% Taiwan 2.1%

Belgium 1.5% France 3.6% Poland 0.5% Turkey 1.0%

Brazil 0.5% Germany 1.0% South Africa 0.5% United Kingdom 1.0%

Canada 5.1% India 11.3% South Korea 3.1% United States 32.8%

China 17.4% Japan 1.0% Spain 1.0% Vietnam 0.5%

In Table 4.4, we present the aggregate data from our EDI survey. Men were overrepre-

sented in OpenKBP (76.9%) compared to the science and engineering population (52.3%)

and the general US population (49.2%). “Asian American/Asian” was the most common

racial or ethnic identity (48.7%) in OpenKBP, which is much greater than the science

and engineering population (13.0%) and the general US population (5.6%). On the other

hand, individuals who identified as “White” were underrepresented in OpenKBP (21.5%)

compared to the science and engineering (68.7%) and US (60.0%) populations. Individ-

uals who identified as “African American/Black” (1.0%) and “Hispanic/Latinx” (4.1%)

were also underrepresented relative to both baseline populations. A relatively large pro-

portion (18.9%) of respondents chose not identify their racial or ethnic identity. Lastly,

the proportion of OpenKBP participants who identified as having no disability (87.2%)

was comparable to both the science and engineering (89.7%) and general US (87.3%) pop-

ulation. Fewer respondents identified with having a disability (2.1%) compared to both

baselines (10.3% and 12.7%), and the remaining proportion of OpenKBP participants

chose not to identify their disability status.
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Table 4.4: The equity, diversity, and inclusion data (rows) of three populations of people
(columns). In order, the columns correspond to the population people who participated
in the Challenge (OpenKBP), are employed in the United States in science and engineer-
ing (S&E), and live in the United States (US). A dash (—) indicates that the data is
unavailable.

OpenKBP S&E81 US99

Number of people (n) 195 27,274 328,239,523

Gender identity

Man 76.9% 52.3% 49.2%

Woman 12.8% 47.7% 50.8%

Prefer not to say 6.7% — —

No answer 3.6% — —

Racial or ethnic identity

African American/Black 1.0% 7.3% 12.4%

Asian American/Asian 48.7% 13.0% 5.6%

Hispanic/Latinx 4.1% 8.6% 18.4%

Middle Eastern/North African 2.1% — —

Native American/Indigenous 0.5% 0.3% 0.7%

Native Hawaiian/Other Pacific Islander 0.0% 0.3% 0.2%

White 21.5% 68.7% 60.0%

Other 3.1% 1.8% 2.8%

Prefer not to say 13.3% — —

No answer 5.6% — —

Identify as having a disability

No 87.2% 89.7% 87.3%

Yes 2.1% 10.3% 12.7%

Prefer not to say 7.2% — —

No answer 3.6% — —

4.3.0.3 Performance over validation phase

In Figure 4.5, we plot the distribution of team scores against normalized submission count.

The plots show that teams generally improved their model throughout the validation

phase, however, most teams made the largest improvements early on. Overall, the average

team improved their dose and DVH score by a factor of 2.7 and 5.7, respectively, over

the course of the validation phase. Over all of the NSC bins, the best dose and DVH
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scores were achieved by two and four different teams, respectively. There were a total of

seven lead changes throughout the validation phase.
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Figure 4.5: The distribution of the dose and DVH scores across all teams. The solid lines
indicate the mean score and the shaded regions indicate the 95% confidence interval. A
dash lined indicates the best score.

4.3.0.4 Final results in testing phase

Figure 4.6 shows the distribution of error differences between the winning team (i.e.,

Team 1) and the top 23 runners-up (Teams 2-24). Compared to each of the other teams,

Team 1 achieved significantly lower dose error over all 100 patients in the testing set

(P < 0.05) and significantly lower DVH error over all 1783 DVH criteria (P < 0.05).

Additionally, when compared to any other team, Team 1 achieved a lower dose and DVH

error over at least 75% and 52% of patients and criteria, respectively.
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Figure 4.6: The distribution of dose and DVH error differences between the winning team

(Team 1) and the top 23 runners-up, ranked by dose score. The boxes indicate median

and IQR, and a circle indicates the mean. Whiskers extend to the minimum of 1.5 times

the IQR and the most extreme outlier.

Table 4.5 summarizes the relative performance of each team under the MAE-based

and MSE-based scores. The winner and first runners-up according to MAE-based score

would have finished in the same place under the MSE-based score. The average abso-

lute rank difference between the two scoring approaches was one. The maximum rank

difference was four and five for dose score and DVH score, respectively. The Spear-

man’s rank-order correlation coefficient for the MAE-based and MSE-based score ranks

was 0.983 (P < 0.001) and 0.981 (P < 0.001) for the dose and DVH score, respectively.

Thus, the results of the competition would have been nearly identical had the MSE-based

score been used.
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Table 4.5: The score and rank that each team achieved in the testing phase according to
an MAE-based (i.e., the score used in the Challenge) and MSE-based (i.e., an alternative
score) score. A positive difference in rank implies that a team performed better on the
MSE-based score than on the MAE-based score.

Team
Dose score DVH score

MAE MSE Rank MAE MSE Rank
Score Rank Score Rank difference Score Rank Score Rank difference

1 2.429 1 15.488 1 0 1.478 1 5.913 1 0
2 2.564 2 16.550 2 0 1.704 12 6.812 10 2
3 2.615 3 17.774 3 0 1.582 7 6.961 12 -5
4 2.650 4 18.091 5 -1 1.539 2 6.031 2 0
5 2.679 5 18.023 4 1 1.573 6 6.525 6 0
6 2.745 6 19.213 7 -1 1.741 14 7.088 14 0
7 2.748 7 18.916 6 1 1.706 13 7.083 13 0
8 2.753 8 19.356 8 0 1.556 5 6.372 3 2
9 2.778 9 19.469 9 0 1.551 3 6.634 7 -4
10 2.814 10 23.417 13 -3 1.555 4 6.433 4 0
11 2.850 11 20.432 10 1 1.669 11 6.904 11 0
12 2.934 12 25.266 14 -2 1.624 10 6.699 8 2
13 2.965 13 25.564 16 -3 1.611 9 6.745 9 0
14 3.040 14 23.192 12 2 1.878 15 7.648 15 0
15 3.114 15 22.454 11 4 2.130 18 9.445 17 1
16 3.186 16 25.427 15 1 1.902 16 8.622 16 0
17 3.237 17 33.642 20 -3 1.610 8 6.441 5 3
18 3.432 18 27.046 17 1 2.551 22 12.602 22 0
19 3.447 19 31.769 18 1 2.101 17 10.830 18 -1
20 3.498 20 33.459 19 1 2.401 20 11.324 19 1
21 3.771 21 37.980 22 -1 2.394 19 11.734 20 -1
22 3.892 22 37.439 21 1 2.451 21 12.436 21 0
23 3.996 23 43.654 23 0 3.216 23 19.856 23 0
24 4.867 24 55.435 24 0 3.220 24 20.178 24 0
25 5.446 25 70.694 25 0 3.712 25 22.335 25 0
26 8.165 26 130.212 26 0 10.362 28 143.358 27 1
27 11.818 27 266.484 27 0 7.713 26 100.080 26 0
28 14.660 28 341.024 28 0 8.379 27 155.465 28 -1

4.3.0.5 Common modelling decisions

According to the model survey, every team in the testing phase trained neural networks

to predict dose distributions. The majority of those models had architectures based on

U-Net,90 V-Net,78 and Pix2Pix57 models. All models were built using either a TensorFlow
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(Google AI, US) or PyTorch (Facebook AI Research, US) framework, but many teams

also reported using higher-level libraries like fast.ai55 to simplify model development. To

train and develop the models quickly, teams generally used a GPU (e.g., NVIDIA 1080Ti,

NVIDIA Titan V); seven teams also reported that they used Google Colab.

Many teams used generalizable techniques to get better model performance. For

example, 22 of the 28 teams used some form of data augmentation in their training

process, and 15 teams combined two or more augmentation methods. Common forms

of data augmentation were rotations, flips, crops, and translations. Most teams also

reported that they normalized dose and CT Hounsfield units. Additionally, most teams

used a standard loss function, e.g., MAE, MSE, GAN loss. There were also some teams

that developed radiation therapy specific loss functions (e.g., functions that prioritized

regions-of-interest more than the unclassified tissue). Lastly, ensemble methods were used

by several of the top teams. Those methods used multiple neural networks to predict

candidate dose distributions that were combined by taking the average prediction. The

exact techniques and methodology used by each of the top three teams are provided in:

Liu et al. 2021,66 Gronberg et al. 2021,49 and Zimmermann et al. 2021.118

4.4 Discussion

There is widespread research interest in knowledge-based planning (KBP) dose prediction

methods. However, the lack of standardized metrics and datasets make it difficult to

measure progress in the field. In this paper, we present the first set of standardized

metrics and the first open dataset for KBP research as part of the OpenKBP Grand

Challenge, the first competition for KBP research. The Challenge democratizes KBP

research by enabling researchers without access to clinical radiation therapy plans to

develop state-of-the-art dose prediction methods. This spurred the development of 28

unique models and will serve as an important benchmark as the field of KBP continues
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to grow.

Our open dataset contains real patient images that were contoured by clinicians at

twelve institutions with different planning protocols. There are two major differences in

protocol that introduce some variance in how PTVs were drawn. First, the raw public

clinical data included plans with multiple radiation therapy modalities. For example,

some of the institutions delivered hybrid-IMRT/3DCRT plans, and those plans had no

PTV margins on the lower neck target volumes. Second, some of the raw public clinical

data is from multiple trials with unconventional contouring in the extent of the target

volumes. For example, we observed some anisotropic PTV margins that were clipped

to omit the OARs. These variations are non-existent in the raw private clinical dataset,

which contains plans from a single institution where all planning and contouring was

done according to a standard process, that was used to create the dose distributions for

the competition. This variation may have been a factor in the public synthetic dose being

non-inferior to the private clinical dose on 19 of 23 dose-volume criteria.

We proposed two new metrics that quantify the general performance (i.e., dose score)

and the clinical performance (i.e., DVH score) of dose prediction methods. These two

metrics may help measure progress in KBP research, and they will complement other

metrics that are typically used in the literature to quantify strengths and weaknesses of

a model. Other metrics are still important because our scoring metrics are unable to

quantify every facet of radiation therapy dose quality. For example, the DVH criteria

evaluated for the DVH score have varying degrees of clinical importance (e.g., Dmandible
max

is much more important than Dmandible
mean ). We chose to weigh all errors equally because

quantifying relative clinical importance is non-trivial and largely dependent on the in-

stitution. Additionally, since the scores are unweighted it is straightforward to use the

scores for all other sites that have OARs and targets (e.g., prostate).

We aimed to make OpenKBP as accessible as possible in order to build a large and

inclusive community, which was especially difficult because the Challenge started at the
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beginning of the COVID-19 pandemic when individuals around the world worked re-

motely. By building a large and inclusive community we ensure that underrepresented

populations can contribute to KBP research, which should both accelerate innovation53

and improve the quality of healthcare.47 As part of this Challenge, we released all compe-

tition data in a non-proprietary format (comma-separated value) and a well-documented

code repository that helped participants use the data easily and efficiently in Python

without costly commercial software. The code repository also had instructions to give

all participants access to high-quality computational resources at zero cost (i.e., Google

Colab). In an effort to keep the data manageable for all participants, we also opted to

use relatively large voxels (e.g., 3mm × 3mm × 2mm voxels) to ensure that the dose

prediction problem was tractable for anyone using Google Colab. This manageable data

size likely also helped the teams iterate and improve their models, which is reflected by

the number of submissions made by teams in the validation phase (40 submissions on

average). We conjecture that a successful model that was developed using the OpenKBP

dataset should also succeed on other less accessible datasets (e.g., clinical datasets with

smaller voxels and more ROIs).

A limitation of this work is that it uses synthetic dose distributions to augment the

real clinical data. Those dose distributions were generated by a published KBP pipeline7

and filtered via Algorithm 1, however, they underwent less scrutiny than clinical plans.

Extensions of this work should ensure that the top performing models on this dataset also

perform well with clinical dose distributions. A second limitation is that we can only

report commonalities between the top models, which are correlated attributes rather

than causal attributes. Future work should do ablation testing to isolate exactly what

attributes contribute to a good dose prediction model. Lastly, all dose predictions were

evaluated and ranked based on two scores. These scores do not capture all of the strengths

and weaknesses of the models submitted to the Challenge.
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4.5 Conclusion

OpenKBP democratizes knowledge-based planning research by making it accessible to

everyone. It is also the first platform that researchers can use to compare their KBP dose

prediction methods in a standardized way. The Challenge helps validate our platform

and provides a much needed benchmark for the field. This new platform should help

accelerate the progress in the field of KBP research, much like how ImageNet helped

accelerate the progress in the field of computer vision.
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Chapter 5

Evaluating complete automated

planning pipelines

In the previous chapters we focused on improving one stage (i.e., the dose prediction

model) of knowledge-based planning (KBP) while holding the other stage constant (i.e.,

the optimization model). In this chapter, we investigate the impact of changing both

stages of KBP to explore the interaction effects between the two stages. We compare the

performance of four KBP pipelines that are assembled from the four possible combina-

tions of two high-quality dose prediction models and two high-quality plan optimization

models. We evaluate the performance of each pipeline on our large private dataset of 217

oropharyngeal cancer treatment plans.

5.1 Introduction

Automated knowledge-based planning is a data-driven approach that uses previous ra-

diation therapy treatments to generate high quality plans for patients diagnosed with

cancer. KBP is typically conceptualized as a two-stage pipeline (see Figure 5.1). In the

first stage, a machine learning (ML) model uses contoured CT images to predict the dose

that should be delivered to a patient. In the second stage, an optimization model uses

83
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the dose prediction from the first stage to generate fluence maps or a set of beam aper-

tures. In the past decade, there has been significant research in improving KBP, focusing

either on advancing the machine learning or the optimization stage independently of each

other.5;44;61;83;95;96;107;111;113;116 In this work, we explore whether the interaction between

the prediction and optimization model affects the overall quality of the final plans.
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Figure 5.1: Overview of the automated knowledge-based planning pipeline.

Several prediction models have been developed that can accurately predict aspects

of a clinical dose distribution from a patient’s anatomy. Originally, these prediction

models required the engineering of useful features from patient information and only

predicted simple summaries (e.g., desirable dose-volume histograms) that could be used

to design objectives for inverse planning software.5;7;95;96;107;111;113;116 However, modern

deep learning techniques can learn useful features in order to predict dose directly from

CT images.10;44;61;71;83 These high-dimensional predictions contain more information and

permit better integration into more sophisticated automated KBP pipelines.71

The dominant optimization models for KBP are inverse planning (IP)8 and dose

mimicking (DM).87 The choice of the parameters, objectives, and constraints in these

models can lead to final treatment plans with characteristics that differ significantly from

the initial predictions. For example, a prediction model may produce dose distributions

that consistently predict excess dose to an OAR, but an optimization model with an

objective to minimize the dose to that OAR may be able to correct for this bias. As a

result, prediction models that produce dose distributions with good criteria satisfaction

may not necessarily produce final plans with the same properties. Constructing effective

automated KBP pipelines, therefore, requires careful selection of both the prediction and

optimization model.
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In this paper, we perform the first comparison between different combinations of

prediction and optimization models in KBP; each model was previously validated in

a KBP pipeline.10;75 In total, we consider two dose prediction methods—a generative

adversarial network10 and a random forest76—and two optimization methods—inverse

planning8 and dose mimicking.87 We then evaluate the four corresponding KBP pipelines

(see Figure 5.2) using a large dataset of 217 patients with oropharyngeal cancer. We

observe that the choice of both the prediction and optimization model can significantly

affect the quality of the final plans generated by a KBP pipeline.

Prediction Optimization

Generative adversarial
network (GAN)

Random forest (RF)

Inverse planning (IP)

Dose mimicking (DM)(b)

(a)

Figure 5.2: Overview of the automated knowledge-based planning pipelines evaluated
in this paper. Solid lines connect the prediction and optimization methods that have
been tested together in (a) Babier et al.10 and (b) McIntosh and Purdie;75 dashed lines
connect the methods that have not been tested in the extant literature.

5.2 Methods and Material

We used CT images with contours, which highlight the regions-of-interest (ROIs), and

dose distributions from clinically accepted treatment plans to train two dose prediction

models that were then tested on out-of-sample clinical plans. The resulting predicted dose

distributions were then passed through each optimization model to generate fluence-based

treatment plans. Figure 5.2 gives an overview of the pipelines, which were then evaluated

in terms of the quality of plans they produced.
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5.2.1 Data

For this research ethics board approved study, we obtained plans for 217 oropharyngeal

cancer treatments delivered at a single institution with 6 MV, step-and-shoot, intensity-

modulated radiation therapy. All plans were prescribed 70 Gy and 56 Gy in 35 fractions

to the gross disease (PTV70) and elective target volumes (PTV56), respectively; in 130

plans there was also a prescription of 63 Gy to the intermediate-risk target volume

(PTV63). The organs-at-risk (OARs) were the brainstem, spinal cord, right parotid,

left parotid, larynx, esophagus, mandible, and the limPostNeck, which is an artificial

structure used to limit dose to the posterior neck.

5.2.2 Prediction models

We trained two state-of-the-art dose prediction models with the same 130 plans from our

dataset and used the remaining 87 for out-of-sample testing.

5.2.2.1 Generative adversarial network

The conditional generative adversarial network (GAN) model57 is based on Babier et

al.10 and uses two convolutional neural networks: (1) a generator that produces a dose

distribution from a contoured CT image; and (2) a discriminator that tries to differentiate

between the artificially generated dose and the actual clinical dose (see Figure 5.3). The

generator is trained to minimize the mean absolute difference between the artificially

generated image and the ground truth (i.e., clinical dose). The objective is regularized

by the discriminator to make the output of the generator indistinguishable from a real

clinical dose distribution. We then normalize the resulting dose generated by GAN so

that it satisfies all target criteria.
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Figure 5.3: Overview of GAN training and testing phases.

5.2.2.2 Random forest

The random forest model is a slight variation of the RF from McIntosh and Purdie.75

It uses the 148 features summarized in Table 5.1 to predict the dose delivered to each

voxel independently. Of these features, 122 were generated by applying Gaussian filters

(GFs) to the grayscale CT images. One of the GFs was isotropic (σ = 10) and a second

was the Laplacian of the Gaussian (σ = 10). The remaining 120 filters were made from

all combinations of the following four parameters: (a) first and second order GFs; (b)

σ = 4, 12, 24, 48, and 64; (c) rotations of 0, 90, 180, and 270 degrees; and (d) rotations in

each of the three axes. RF was trained to minimize the mean squared difference between

the prediction and the ground truth using the default settings of randomForestRegressor

from scikit-learn.

Table 5.1: The features used in RF to predict the dose for each voxel.

Feature Quantity Description

Structure 11 Structure voxel is classified as (one-hot-encoded)
x-coordinate 1 Voxel’s positions on the x-axis in a slice
y-coordinate 1 Voxel’s positions on the y-axis in a slice
z-coordinate 1 Plane of voxel’s slice
ROI distance 11 Voxel’s distance from surface of each ROI
CT gray-scale 1 Voxel’s gray-scale in the CT image
GF CT gray-scale 122 Voxel’s gray-scale in CT image post GF
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5.2.3 Optimization models

For all out-of-sample patients, the output from each prediction model was passed to

both optimization models which were solved using Gurobi 7.5. The complexity of all

generated treatment plans was constrained to a sum-of-positive-gradients (SPG) value

of 55.35 SPG was used since it is a convex surrogate for the physical deliverability of

a plan and the parameter 55 was chosen as it is two standard deviations above the

average clinical SPG.7 Both optimization models used the same set of targets T and

healthy structures I. Each target t ∈ T was a planning target volume (PTV) with a

prescribed dose θt. The healthy structures contained in I were the brainstem, spinal

cord, right parotid, left parotid, larynx, esophagus, mandible, and limPostNeck. Each

target structure t ∈ T and healthy structure i ∈ I was divided into a set of voxels Ot

and Oi, respectively.

The KBP-generated plans were delivered from nine equidistant coplanar beams at

angles 0◦, 40◦, . . . , 320◦. Those beams were divided into a set of beamlets B, which

make up one fluence map at each beam angle. The relationship between the intensity

wb of beamlet b and dose dv deposited to voxel v was determined using the influence

matrix Dv,b generated by the IMRTP library from A Computational Environment for

Radiotherapy Research,38 and it is given by

dv =
∑
b∈B

Dv,bwb.

5.2.3.1 Inverse planning

We followed a previously developed two-stage approach to inverse planning.8 In the first

step, we estimate the objective weights for a conventional inverse planning model that

makes a predicted dose distribution optimal. In the second step, the estimated weights

are used to re-solve the conventional inverse planning optimization model and construct a

treatment plan. The objective to be minimized was a sum of 65 functions: seven per OAR
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and three per target. The objectives for the OARs were the mean dose, maximum dose,

and the average dose above 0.25, 0.50, 0.75, 0.90, and 0.975 of the maximum predicted

dose to the OAR. The objectives for the target were the maximum dose, average dose

below prescription, and average dose above prescription.

5.2.3.2 Dose mimicking

Our dose mimicking (DM) model minimized the sum of one-sided penalties to generate

a plan that performs as close as possible to the predicted dose on several voxel- and

structure-based objectives. Two types of OAR objectives were used. The first was a

voxel-based objective that minimizes the dose dv that exceeds the predicted dose d̂v for

each voxel v:

xv = max
{

0, dv − d̂v
}
, ∀v ∈ Oi,∀i ∈ I. (5.1)

The second was a structure-based objective that minimizes the maximum dose until it

no longer exceeds the maximum predicted dose:

yi = max

{
0, max

v∈Oi
{dv} −max

v∈Oi
{d̂v}

}
, ∀i ∈ I. (5.2)

Three types of target objectives were also used. The first was a voxel-based objective

to minimize the average deviation below the prescribed target dose θt, which is the

average underdose to target t. Specifically, the objective function lv penalizes dose until

the plan underdose is no worse than what was predicted for each voxel v. The objective

is formulated as:

lv = max
{

0, θt − dv −max{0, θt − dv}
}
, ∀v ∈ Ot,∀t ∈ T . (5.3)

Similarly, the second objective was also voxel-based, however, it minimizes the average

deviation above the prescribed target dose θt, which is the average overdose to target t.
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Specifically, the objective function uv penalizes dose until the plan overdose is no worse

than what was predicted for each voxel v. The objective is formulated as:

uv = max
{

0, dv − θt −max{0, d̂v − θt}
}
, ∀v ∈ Ot,∀t ∈ T . (5.4)

The final target objective was structure-based. It maximizes the minimum dose to the

target until it exceeds the minimum dose that was predicted for the target:

zt = min

{
0, min

v∈Oi
{d̂v} − min

v∈Oi
{dv}

}
, ∀t ∈ T . (5.5)

To formulate the dose mimicking optimization problem, we used an objective function

that was the summation of (1)-(5) with the voxel-based objectives divided by the number

of voxels in each respective structure. We then added the appropriate auxiliary variables

and constraints.18 That is, the conceptual DM model can be written as

minimize
x,y,l,u,z,w

∑
i∈I

(
1

|Oi|
∑
v∈Oi

x2v + (yi)2

)
+
∑
t∈T

(
1

|Ot|
∑
v∈Ot

(
l2v + u2v

)
+ (zt)2

)
,

subject to Equations (5.1)− (5.5),

SPG ≤ 55.

5.2.4 Performance analysis

We evaluated four distinct KBP pipelines based on the plans they produced; predictions

were also evaluated because they are an important intermediate step. We refer to the four

sets of KBP plans as GAN-IP, RF-IP, GAN-DM, and RF-DM. We evaluated the predicted

and plan dose distributions in terms clinical criteria, the difference in the performance

of each optimization model when the same set of predictions is used as input, and the

prediction error. Details of these performance metrics are presented below.
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Criteria Satisfaction

We quantified the quality of KBP plans by how often they satisfied the same clinical

criteria presented in Table 5.2. Specifically, we examined how often the plans satisfied

the same criteria as the clinical plans in each class of criteria (i.e., OARs, targets, and

all ROIs, which includes both OARs and targets). We also evaluated the quality of

the prediction models to determine whether criteria satisfaction in the predicted dose

distribution is an early indicator of final plan quality. Finally, we evaluated the difference

in dose criterion between our KBP dose distributions and the reference clinical plans; the

differences are visualized with box plots.

Table 5.2: The planning criteria used for evaluation: D99 is the minimum dose to 99% of
the structure volume, Dmean is the mean dose to a structure, and Dmax is the maximum
dose to a structure.

Structure Criteria

Brainstem Dmax ≤ 54 Gy
Spinal Cord Dmax ≤ 48 Gy
Right Parotid Dmean ≤ 26 Gy
Left Parotid Dmean ≤ 26 Gy
Larynx Dmean ≤ 45 Gy
Esophagus Dmean ≤ 45 Gy
Mandible Dmax ≤ 73.5 Gy
PTV56 D99 ≥ 53.2 Gy
PTV63 D99 ≥ 59.9 Gy
PTV70 D99 ≥ 66.5 Gy

Optimization performance differences

For each clinical planning criterion (Table 5.2), we evaluated the difference in dose be-

tween plans generated with an identical set of predictions but a different optimization

model; the differences between the two optimization models (i.e., IP and DM) are visu-

alized with a box plot. We then used a two-sided Mann-Whitney U test to determine if
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plans generated by IP were the same (null hypothesis) or different (alternative hypoth-

esis) from those generated by DM for the population of plans generated from each set

of predictions. For these and all subsequent hypothesis tests, p < 0.01 was considered

significant.

Prediction performance differences

We evaluated the error of each prediction method by evaluating the median absolute

difference between the predicted and clinical dose distributions across each ROI for every

out-of-sample plan. The error is visualized with a box plot and we used a two-sided

Mann-Whitney U test to determine if GAN had the same (null hypothesis) or a different

(alternative hypothesis) prediction error than RF.

5.3 Results

Criteria Satisfaction

Table 5.3 summarizes the performance of the predicted and plan dose distributions.

RF-DM plans achieved the same OAR criteria as the clinical plans most often (83.9%).

However, GAN-IP plans satisfied the target criteria 28.8% more often than RF-DM plans,

and achieved close to RF-DM performance on the OAR criteria (4.6 percentage points

less). Across all ROIs, the proportion of GAN-IP plans satisfied the same criteria as

the corresponding clinical plans 17% more often than its closest competitor (RF-IP).

Additionally, while GAN-IP performed better than RF-IP, GAN-DM performed worse

than RF-DM, which suggests that there is an interaction effect between the prediction

and optimization model that must be accounted for.

In Table 5.3, we also compare the predictions to the clinical plans. We emphasize

that unlike the generated plans, i.e., IP and DM plans, the predictions are only an

intermediate step in the KBP pipeline. Here, we found that GAN predictions exhibited



Chapter 5. Evaluating complete automated planning pipelines 93

poor performance on all OAR criteria (24.1%) which we attribute to the poor performance

on the mandible criteria (13.6%). The performance of RF and GAN predictions over all

target criteria was similar. Overall, RF predicted that plans could satisfy the same

criteria as the clinical plans in 78.2% of cases, which far exceeded GAN predictions

(24.1%). Most importantly, however, these results do not carry through to the final

plans. That is, only GAN-IP plans achieved the same proportion of All ROI criteria

(78.2%) that was predicted by RF.

Table 5.3: The percentage of clinical plans that satisfied each criteria is summarized
in the column “Clinical”. The other columns summarize the percentage of KBP dose
distributions that satisfied the same clinical criteria as the clinical plans. The rows under
the “All” heading summarize the the percentage of KBP dose distributions that satisfied
all clinical criteria in the corresponding group that were satisfied by the clinical plans.
Only IP and DM plans use the full KBP pipeline.

Predictions IP plans DM plans
Clinical GAN RF GAN-IP RF-IP GAN-DM RF-DM

OARs
Brainstem 100.0 100.0 98.9 100.0 100.0 100.0 98.9
Spinal Cord 100.0 97.7 100.0 100.0 100.0 90.8 97.7
Right Parotid 20.5 64.7 64.7 94.1 76.5 76.5 82.4
Left Parotid 12.8 81.8 54.5 81.8 54.5 81.8 90.9
Larynx 61.3 71.4 89.8 91.8 87.8 81.6 93.9
Esophagus 94.0 100.0 100.0 100.0 100.0 100.0 100.0
Mandible 75.9 13.6 100.0 81.8 74.2 36.4 93.9

Targets
PTV56 52.9 100.0 97.8 97.8 95.7 100.0 93.5
PTV63 100.0 100.0 98.0 100.0 98.0 100.0 100.0
PTV70 66.7 100.0 100.0 100.0 98.3 98.3 58.6

All
OARs – 24.1 80.5 79.3 69.0 41.4 83.9
Targets – 100.0 97.7 98.9 95.4 98.9 70.1
ROIs – 24.1 78.2 78.2 66.7 41.4 56.3

In Figure 5.4, we present six box plots to compare the difference between the KBP

dose distributions and their respective clinical plans for each criterion; the reported



Chapter 5. Evaluating complete automated planning pipelines 94

differences are relative to the dose threshold of that criterion. We include plots for two

categorizations: Figure 5.4 (a, c, e) the differences over all criteria and Figure 5.4 (b, d,

f) the differences over only criteria that the clinical plans achieved. We found that IP is

generally better than DM at transforming poor predictions into competitive plans. For

example, the median GAN prediction for the mandible criterion was 0.045 (3.3 Gy) worse

than the clinical plans. However, GAN-IP used those predictions to generate plans that

were only 0.001 (0.1 Gy) worse than clinical plans; this was 0.024 (1.8 Gy) better than

the GAN-DM plans. These plots also show the interquartile range (IQR) of differences in

criteria satisfaction. They demonstrate that smaller IQR values occur over criteria that

the clinical plans achieved, i.e., criteria that are high priority in practice. This suggests

that the models will learn whether there is implicit consensus amongst oncologists as to

the relative importance of criteria.

Optimization performance differences

In Figure 5.5, we present two box plots to compare the quality of plans from different

optimization models when the same prediction model was used as input. The plots

show how the plans generated by IP differ from those generated by DM in terms of the

dose delivered to each clinical planning criterion relative to the dose threshold of that

criterion. On average, IP was better than DM by 2% when GAN predictions were used as

input. However, we found no difference between plans generated by IP and DM when RF

predictions were used as input. We also found that IP performed better than DM in 69.5%

and 50.8% of all evaluation criteria when the inputs were from GAN and RF, respectively.

Statistically, when the GAN predictions were used as input, the plans generated by IP

and DM performed differently on the clinical criteria (p < 0.001). However, we observed

no difference (p = 0.045) when RF predictions were used as input to the optimization

models. Overall, we observed that the performance of each optimization model was

dependent on the prediction model that was used.
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Figure 5.4: The distribution of clinical criteria differences between KBP dose and clinical
dose over all ROIs for (a) predictions, (c) IP plans, and (e) DM plans; and only ROIs
where clinical plan achieved the criteria for (b) predictions, (d) IP plans, and (f) DM
plans. The boxes indicate median and IQR. Whiskers extend to the minimum of 1.5
times the IQR and the most extreme outlier.
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Figure 5.5: The difference in terms of clinical planning criteria between plans generated
by IP and DM where the input to both models are (a) GAN predictions and (b) RF
predictions. Positive differences imply that the IP plan was better than the DM plan in
that criterion. The boxes indicate median and IQR. Whiskers extend to the minimum of
1.5 times the IQR and the most extreme outlier.

Prediction performance differences

In Figure 5.6, we present the distribution of mean absolute differences between the pre-

dicted and clinical dose over the regions of interest (i.e., the mean absolute error between

the predictions and clinical plans). Although both models had the same median predic-

tion error across all OARs (4.3 Gy), RF error across targets (1.3 Gy) was much lower than

GAN error (3.0 Gy). Overall, GAN predictions had higher median error across all ROIs

(3.9 Gy) than RF predictions (3.6 Gy), and these predictions errors were significantly

different (p < 0.001).

5.4 Discussion

Historically, each stage of KBP has been developed in isolation with a focus on improving

the prediction stage. In this paper, we show that there are interaction effects between

the prediction and optimization stages of KBP that significantly affect the quality of the

generated plans. Our experimental setup consists of four KBP pipelines that were assem-
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Figure 5.6: The distribution of average dose differences between KBP prediction and
clinical dose over all ROIs. The boxes indicate median and IQR. Whiskers extend to the
minimum of 1.5 times the IQR and the most extreme outlier.

bled from two existing KBP methods, i.e., Babier et al. 10 and McIntosh and Purdie 75

(see Figure 5.2). Overall, the best performing combination of prediction and optimiza-

tion methods was the GAN and IP. However, we also demonstrate that predictions that

produce good plans with one optimization model (e.g., GAN-IP) do not always produce

good plans with another optimization model (e.g., GAN-DM).

Although both RF and GAN predict 3D dose distributions, they differ in their ap-

proach. RF predicts the dose to each voxel independently of every other voxel. In

contrast, GAN predicts the dose to all voxels simultaneously, thereby making predictions

that are conditioned on the predictions of neighboring voxels. RF generally produces

predictions that are more similar to clinical plans on summary statistics like mean abso-

lute dose difference (Figure 5.6). This is likely because GAN optimizes a regularized loss

function that encourages realistic looking images. This results in predictions that have

worse performance on summary statistics as compared to a model like RF that minimizes

the squared difference between predictions and the ground truth without regularization.

The quality of deliverable plans depends heavily on the combination of the predic-
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tion and optimization components used to construct the KBP pipeline. For example,

combining GAN and IP results in plans that perform well on average in terms of sat-

isfying clinical criteria. Interestingly, the KBP pipelines that perform the best contain

stages that use same order loss and objective functions (i.e., linear-linear or quadratic-

quadratic). Namely, GAN (trained with mean absolute loss) and IP (optimized with a

linear objective function) produce the best IP plans. Similarly, RF (trained with mean

squared loss) and DM (optimized with a quadratic objective function) produce the best

DM plans.

When considering OAR and target criteria satisfaction as the two key components, we

observe that there is no single two-stage KBP pipeline that dominates all others. While

GAN-IP performs at least as well as RF-IP and GAN-DM on both metrics, RF-DM out-

performs GAN-IP on OAR criteria satisfaction. We conjecture that because the PTV70

and the mandible are physically close together and their respective criterion compete

with each other (i.e., the PTV70 criterion needs a high dose while the mandible criterion

needs a low dose), the GAN struggles to learn an acceptable compromise. Variation in

this compromise across the clinical plans may also add to the struggle. As a consequence,

the model generally performs well on the PTV70 criterion but poorly on the mandible

criterion.

Inverse planning includes a specific objective that minimizes the dose to the mandible,

so even if the predictions (incorrectly) assume that mandible criterion satisfaction is

unimportant, the mandible objective in IP improves mandible criterion performance.

In contrast, dose mimicking attempts to construct dose distributions that are no worse

than the predictions (in terms of Equations (5.1)–(5.5)), which generally leads to less

improvement on the mandible criterion. Due to the biased nature of GAN predictions

towards the mandible, IP can help to improve the single weak criterion with minimal

expense to the other criteria. On the other hand, IP is unable to correct any significant

under-performance of the RF predictions, which generally already perform well across
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most criteria (i.e., it achieves the same criteria as the clinical plans).

A limitation of our work is that, although we identified that the prediction and

optimization stages of KBP affect the overall quality of the plans they generate, we

were unable to isolate the root cause of those effects. Additionally, the data for this work

is from a cohort of patients treated at a single institution. Due to variability in clinical

practice between institutions, the performance of these models may vary for a different

cohort of patients. A second limitation is that the computational resources required

for this analysis scales exponentially with the number of prediction and optimization

models considered. As a result, it is computationally intensive to determine what existing

optimization model should be paired with a new approach to dose prediction (and vice

versa).

5.5 Conclusion

This study demonstrates that the performance of an automated KBP pipeline is depen-

dent on how well the prediction and optimization models perform together. As a result,

we recommend that new prediction methods should be tested with multiple optimization

models before they are considered to be state-of-the-art (and vice versa).



Chapter 6

OpenKBP: An open framework for

plan optimization

In Chapter 5 we determined that the choice of both stages in knowledge-based planning

(KBP) can contribute to considerable variation in quality. In this chapter, we explore

these interaction effects further with the dose prediction models that were developed

in the OpenKBP Grand Challenge, which we described in Chapter 4. Additionally, we

develop four new plan optimization models and demonstrate a clear link between dose

mimicking and inverse optimization. The data and code for this project is published to

enable other researchers to test new KBP plan optimization models on a large set of dose

prediction models.

6.1 Introduction

Automated radiotherapy planning is transforming clinical practice and personalized can-

cer treatment.80 The most common type of automated planning is knowledge-based plan-

ning, which leverages knowledge derived from historical clinical treatment plans to gen-

erate new treatment plans without human intervention.34;59;77 Most common KBP meth-

ods can be thought of as a two-stage pipeline that first predicts the dose that should be

100



Chapter 6. OpenKBP: An open framework for plan optimization 101

delivered to a patient, and then converts that prediction into a treatment plan via opti-

mization (Figure 6.1). Both stages of this pipeline, which are active areas of research, can

significantly affect the quality of generated treatment plans.11 The contributions of this

paper are twofold: 1) to provide data that supports KBP optimization research at scale

and 2) to establish a connection between dose mimicking (a type of KBP optimization)

and conventional planning methods. We expand on the impact of these contributions

throughout this paper.

Contoured
CT image

Dose prediction
model

Predicted
clinical dose

Plan optimization
model

Treatment plan

Figure 6.1: Overview of a complete knowledge-based planning pipeline.

Comparing the quality of competing KBP models from the research community is dif-

ficult because the vast majority of research is conducted with large private datasets, as

noted in several reviews.46;56;79;103 To help address this issue, the Open Knowledge-Based

Planning (OpenKBP) Grand Challenge was organized to facilitate the largest interna-

tional effort to date for developing and comparing dose prediction models on a single

open dataset13 The OpenKBP dataset, which includes data for 340 head-and-neck pa-

tients undergoing intensity modulated radiotherapy (IMRT), is limited to dose prediction

research (i.e., it is incompatible with KBP optimization research). Although there are

still no open datasets for KBP optimization research, there are two open datasets that

support research in other areas of plan optimization.25;36 However, it is challenging to use

these datasets in KBP plan optimization research for two reasons. First, neither dataset

includes dose predictions, which are the input to KBP plan optimization models. Second,

they are smaller (123 patients across both datasets), span multiple sites (prostate, liver,

head-and-neck), and multiple modalities (CyberKnife, volumetric modulated arc therapy,

proton therapy, IMRT). While such a diversity in cases is important to demonstrate the
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robustness and generalizability of optimization algorithms across sites and modalities,

this same diversity is a disadvantage when it comes to training dose prediction models,

since there is insufficient data for any one site-modality pair.23

Most KBP pipelines are developed as fully-automated pipelines that can replace hu-

man treatment planners in the planning process.15;44;76;106 These approaches have demon-

strated promising results in prospective research studies where a sizeable portion of KBP-

generated plans were considered inferior to human-generated plans, which suggests that

there is an opportunity for improvement.34;77 In those cases, making manual adjustments

to the KBP-generated plan is non-trivial because they are generated by fully-automated

pipelines that rely on the quality of the data. In contrast to fully automated pipelines,

semi-automated pipelines rely on both the quality of data and human expertise, which

puts less reliance on the data. For example, a semi-automated KBP pipeline could enable

human planners to improve upon a KBP-generated plan via an intuitive process (e.g.,

inverse planning) and thereby provide a pipeline that leverages human expertise, models,

and data. In the KBP literature, however, there are relatively few papers that describe

tools that humans can intuitively interact with in semi-automated KBP pipeline.8;20;64;114

In this paper, we extend the results from the OpenKBP Grand Challenge, which

we call OpenKBP, with an international validation of 76 KBP pipelines. We made this

extension, which we call OpenKBP-Opt, open to provide a benchmark for KBP optimiza-

tion research and to lower the barriers for contributing to this research area. We also

demonstrate how KBP plan optimization models can be used to initialize the conven-

tional planning process (i.e., inverse planning) with good patient-specific parameters (i.e.,

objective weights) and provide the means for a semi-automated KBP pipeline. Identify-

ing this relationship provides a mechanism for transforming existing KBP optimization

models, which are generally fully-automated pipelines that impede manual intervention,

into semi-automated pipelines that promote human planners to improve upon a KBP-

generated plan via inverse planning (i.e., a familiar and intuitive process). The data and
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code to reproduce this paper is publicly available at https://github.com/ababier/open-

kbp-opt.

6.2 Methods and materials

Figure 6.2 summarizes the overall methodological approach into five components. The

first three components (i.e., processing data, developing dose prediction models, and gen-

erating KBP dose predictions) are based on the results of the OpenKBP Grand Challenge.

The final two components (i.e., developing plan optimization models and generating KBP

treatment plans) are an extension of the OpenKBP Grand Challenge and the focus of

this paper. Below, we describe all five components and our analysis.

Processing data
Developing dose
prediction models

Generating KBP
dose predictions

Developing plan
optimization models

Generating KBP
treatment plans

Focus of OpenKBP 1.0 Focus of OpenKBP 2.0

Figure 6.2: An overview of our methods. A full description of each component is provided
in the corresponding subsection.

6.2.1 Processing data

We obtained data for 340 patients (n = 340) with head-and-neck cancer from the

OpenKBP Grand Challenge. The data consisted of a training set (n = 200), a vali-

dation set (n = 40), and a testing set (n = 100). The plans were delivered via 6 MV

step-and-shoot IMRT from nine equidistant coplanar beams at angles 0◦, 40◦, . . . , 320◦.

Those beams were divided into a set of beamlets B, which make up a fluence map. The

relationship between the intensity wb of beamlet b and dose dv deposited to voxel v

was determined using the influence matrix Dv,b generated by the IMRTP library from A

Computational Environment for Radiotherapy Research38 using MATLAB, and it is

given by

https://github.com/ababier/open-kbp-opt
https://github.com/ababier/open-kbp-opt
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dv =
∑
b∈B

Dv,bwb. (6.1)

6.2.2 Developing dose prediction models

All dose prediction models used in this paper were developed in the OpenKBP Grand

Challenge.13 During the challenge, teams developed dose prediction models using identi-

cal training and validation datasets with access only to ground truth data (i.e., dose) for

the training set. Every dose prediction model used a neural network architecture that

was based on either a U-Net,90 V-Net,78 or Pix2Pix57 architecture. Many of the best

performing models also used other generalizable techniques like ensembles,85 one-cycle

learning,118 radiotherapy-specific loss functions,49 and deep supervision.66

All teams competed to develop models that minimize one of two pre-defined error

metrics that quantified the difference between the reference dose and a KBP-generated

dose (i.e., KBP prediction or plan dose). The metrics were: 1) dose error, which was

the mean absolute voxel-by-voxel difference between two dose distributions, and 2) dose-

volume histogram (DVH) error, which was the absolute difference between a DVH point

from two dose distributions. The DVH error was evaluated on two and three DVH points

for each organ-at-risk (OAR) and target, respectively. The OAR DVH points were the

Dmeanand D0.1cc, which was the mean dose delivered to the OAR and the maximum dose

delivered to 0.1cc of the OAR, respectively. The target DVH points were the D1, D95, and

D99, which was the dose delivered to 1% (99th percentile), 95% (5th percentile), and 99%

(1st percentile) of voxels in the target, respectively. The models were ranked according

to: 1) dose score, which was the average dose error of a model, and 2) DVH score, which

was the average DVH error of a model.
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6.2.3 Generating KBP dose predictions

In this paper, the OpenKBP organizers collaborated with teams that competed in the

OpenKBP Grand Challenge. The 28 teams that completed the final phase of the OpenKBP

Grand Challenge were invited to participate in the OpenKBP-Opt project, and 21 of those

teams agreed to participate. We obtained the dose predictions from all teams for each

patient in the test set to create a set of 2100 dose predictions (21 different predictions

for each of the 100 patients). We observed that two models produced dose scores that

were over two standard deviations (6.3 Gy) above the mean (4.0 Gy), whereas the rest

were within half a standard deviation (1.6 Gy) of the mean. Thus, we omitted those two

outlier models and proceeded with only 19 KBP models (n = 1900 predictions).

6.2.4 Developing plan optimization models

Next, we formulated four dose mimicking models, which are a type of KBP optimization

model. Each model used the same set of structures and objective functions that we

described in Section 6.2.4.1 and Section 6.2.4.2, respectively. However, they differ in how

they mimic (i.e., penalize differences) a specific dose distribution. In particular, they

each have a different cost function, outlined in Section 6.2.4.3. Note that in this paper

the terms “objective function” and “cost function” refer to distinct concepts, and the

cost functions in this paper are functions of objective functions.

6.2.4.1 Structures

All of our optimization models used the same set of regions-of-interest (ROIs)Rp for each

patient p ∈ P in our test set. The set Rp contains OARs Ip, targets Tp, and optimization

structures Op. The OARs contained in Ip were the brainstem, spinal cord, right parotid,

left parotid, larynx, esophagus, and mandible. Each target t ∈ Tp was a planning target

volume (PTV) with a dose level θt, and those targets were the PTV56, PTV63, and

PTV70. The optimization structures contained in Op were the limPostNeck, which was
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used to limit dose to the posterior neck, and six PTV ring structures (a 3 mm ring and

a 6 mm ring for each target). These were the same structures used to generate the plans

in the original OpenKBP dataset.13 Every ROI r ∈ Rp was also divided into a set of

voxels Vr.

6.2.4.2 Objective functions

Our models used the objective functions in Table 6.1. Each objective function quantified

a different measure of the dose delivered to a single ROI r ∈ Rp in a patient p ∈ P ,

which we call an objective value. Specifically, the average and maximum objective values

quantified the average dose and maximum dose delivered to an ROI r, respectively. The

high and low conditional value at risk (CVaR) objective values quantified the average

dose in ROI r that was higher and lower, respectively than the dose threshold f .

Table 6.1: The formulations for objective functions in our models.

Name Objective function

Average dose mean
v∈Vr

{dv}
Maximum dose max

v∈Vr
{dv}

High CVaR dose mean
v∈Vr

{max {0, dv − f}}
Low CVaR dose mean

v∈Vr
{max {0, f − dv}}

In total, we considered 107 objectives functions: seven per OAR, three per target,

and seven per optimization structure. The objective functions for each OAR were the

mean dose; maximum dose; and high CVaR dose with thresholds f equal to 0.25, 0.50,

0.75, 0.90, and 0.975 of the maximum predicted dose to that structure. The objective

functions for each target were the maximum dose, low CVaR dose with a threshold equal

to the dose level of the target (i.e., f = θt), and a high CVaR dose with a threshold f

equal to 1.05 of the dose level of the target (i.e., f = 1.05θt). The objective functions

for each optimization structure were the same as the OAR objective functions. Not all
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patients had all ROIs, so some models had fewer than 107 objective functions.

6.2.4.3 Model formulations

Our KBP optimization models performed dose mimicking to generate plans with op-

timized objective values that closely matched the input objective values from a dose

prediction. To streamline our model formulation, let each m ∈Mp denote one of the 107

objective functions (as outlined in Section 6.2.4.2). Let gm and ĝm be objective values of

their corresponding objective functions evaluated over the optimized plan and predicted

dose, respectively. In all models, the cost functions were formulated such that lower

values of gm were favored over higher values.

Table 6.2 presents the cost functions of our dose mimicking models. Each model

minimized either the mean or max difference between all corresponding pairs {gm, ĝm}

of the objective values, which were quantified via an absolute (e.g., gm − ĝm) or relative

(e.g., (gm− ĝm)/ĝm) difference measure, resulting in four dose mimicking models. In the

mean difference models, we chose to prioritize the positive differences (i.e., where the

optimized plan objective value was higher than the predicted dose objective value) more

than the negative differences, which we assigned a small positive weight ε (ε = 0.0001

in our experiments). This was done to incentivize the model to do at least as well as

the dose prediction before striving to outperform the dose prediction on other objective

functions. In contrast, the max difference models used only a single term because the

max difference naturally incentivizes the model to outperform the prediction only once

the plan outperforms the prediction across all objective values (i.e., when gm ≤ ĝm,∀m ∈

Mp).

The main constraint in all four models was a constraint to limit plan complexity. In

particular, the sum-of-positive gradients (SPG)35 of all plans generated by the models

was constrained to be less than or equal to 65, which was a constraint in the reference

plans.13 The remaining constraints were simply auxiliary constraints (including auxiliary
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Table 6.2: The cost functions for each model that minimize mean absolute (MeanAbs),
max absolute (MaxAbs), mean relative (MeanRel), and max relative (MaxRel) differences
between the optimized and predicted objective values {gm, ĝm}.

Optimization model cost function

MeanAbs mean
m∈Mp

(gm − ĝm)+ + ε mean
m∈Mp

(gm − ĝm)−

MaxAbs max
m∈Mp

(gm − ĝm)

MeanRel mean
m∈Mp

(
gm−ĝm
ĝm

)+
+ ε mean

m∈Mp

(
gm−ĝm
ĝm

)−
MaxRel max

m∈Mp

(
gm−ĝm
ĝm

)

variables) used to linearize both the objective and cost functions (i.e., the formulations

in Table 6.1 and Table 6.2). The optimization models were all formulated in Python 3.7

using OR-Tools 8.2 and solved using Gurobi 9.1 (Gurobi Optimization, TX, US) on a

single computer with an Intel i7-8700K (6-Core 3.7 GHz) CPU and 16 GB of random

access memory. Default parameters were used with the Gurobi solver except for Crossover

set to 0, Method set to 2, and BarConvTol set to 0.0001, which were selected based on

past experience to improve solve time without compromising solution quality.

6.2.5 Generating KBP treatment plans

Next, we assembled 76 KBP pipelines by combining the 19 dose prediction models with

each of the four dose mimicking models. Each pipeline was applied to the 100 patients in

the testing set, resulting in 7600 KBP plans (see Figure 6.3). We used these plans in our

analysis to measure the quality of the respective KBP models. We refer to the four plans

generated from each prediction as MeanAbs, MaxAbs, MeanRel, and MaxRel plans.

Altogether, after completing the process in Figure 6.3, we had dose distributions for

a set of reference plans (n = 100), predictions (n = 1900), and KBP plans generated

by four dose mimicking models (n = 4 × 1900). The reference plans are the plans that

were released as part of the OpenKBP Grand Challenge, and the predictions are dose
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Figure 6.3: An overview of our process where (a) dose prediction models were trained
on out-of-sample data and (b) those models were used to predict dose for input to dose
mimicking optimization models to generate KBP plans.

distributions that were submitted by 19 teams in the final testing phase of OpenKBP.

In general, there will be differences between the reference plan, prediction, and KBP

plan dose distributions. Differences between a dose prediction and its corresponding

KBP plan are due to factors including prediction noise and deliverability of the dose

prediction. Differences between a KBP plan and its corresponding reference plan reflect

different trade-offs in the cost function used to generate these plans.

6.2.6 Analysis

We conducted three analyses to measure model performance in terms of dose error, DVH

point differences, and clinical criteria satisfaction. We also investigated the theoreti-

cal connection between our dose mimicking models and inverse planning. Finally, we

summarized empirical optimization metadata.

6.2.6.1 Dose score and error

We evaluated the KBP models using the dose score and dose error as defined in Sec-

tion 6.2.2. We calculated the Spearman rank order correlation of the dose score between

the prediction models and corresponding KBP pipelines. The distribution of dose error

was visualized using a box plot. A one-sided Wilcoxon signed-rank test was used to de-

termine whether the dose error of the optimization models was the same (null hypothesis)
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or lower (alternative hypothesis) than the dose predictions models. For all hypothesis

tests in this paper, P < 0.05 was considered significant.

6.2.6.2 DVH point differences

To measure the relative quality of dose distributions from a clinical perspective, we

examined the distribution of DVH point differences between the reference and KBP-

generated dose. The differences were evaluated over the DVH points listed in Section 6.2.2

and visualized using boxplots. We used the one-sided Wilcoxon signed-rank test to

determine whether the dose generated by all optimization models performed the same

(null hypothesis) or better (alternative hypothesis) than the dose predictions. This test

was chosen to evaluate the aggregate performance of all optimization models relative to

the predictions. Lower values were better for Dmean, D0.1cc, and D1; higher values were

better for D95 and D99.

6.2.6.3 Expected criteria satisfaction

As another measure of plan quality, we examined the proportion of clinical criteria that

were satisfied by the reference plans and KBP-generated dose. One criterion was eval-

uated for each ROI (see Table 6.3). We tabulated the proportion of criteria that were

satisfied by the reference plans, dose predictions, MeanAbs plans, MaxAbs plans, Mean-

Rel plans, MaxRel plans, and the plans from the KBP pipeline that satisfied the most

clinical criteria overall. We also plotted the proportion of OAR, target, and all ROI

clinical criteria that each of the 76 KBP pipelines achieved.

6.2.6.4 Theoretical analysis of dose mimicking models

To justify our choice of dose mimicking models, we conducted a theoretical analysis into

their structure using linear programming duality theory.18 This analysis was based on

previous literature that showed a connection between Benson’s method,17 which identifies
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Table 6.3: The clinical criteria that we used to evaluate dose distributions. Before
evaluating these criteria, we reinstated any overlap between targets that was removed.

Structures Criteria

OARs
Brainstem D0.1cc ≤ 50.0 Gy
Spinal cord D0.1cc ≤ 45.0 Gy
Right parotid Dmean ≤ 26.0 Gy
Left parotid Dmean ≤ 26.0 Gy
Esophagus Dmean ≤ 45.0 Gy
Larynx Dmean ≤ 45.0 Gy
Mandible D0.1cc ≤ 73.5 Gy

Targets
PTV56 D99 ≥ 53.2 Gy
PTV63 D99 ≥ 59.9 Gy
PTV70 D99 ≥ 66.5 Gy

efficient solutions to multi-objective optimization models, and estimating the weights for

inverse planning.30 We were motivated to conduct a similar analysis as in Chan et al.30

because our dose mimicking models are similar to the formulations in Benson 1978.17 In

particular, we linearized the dose mimicking models, took their duals, and related the

dual variables to objective function weights in a conventional multi-objective planning

problem depicted in model (6.2).

minimize
g

∑
m∈Mp

α̂mgm,

subject to SPG ≤ 65,

Auxiliary constraints to linearize functions in Table 6.1 and 6.2.

(6.2)

6.2.6.5 Optimization metadata

Lastly, we summarized the metadata that each optimization model generated. In partic-

ular, we evaluated the average proportion of objective weight that each model assigned to

OAR, target, and optimization structure objective functions. Additionally, we recorded

the average, first quartile, and third quartile solve time.
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6.3 Results

In this section, we summarize the performance of the 19 dose predictions models, four

dose mimicking models, and 76 KBP pipelines.

6.3.1 Dose error and score

Table 6.4 summarizes the rank order correlation between the dose prediction models

and their corresponding KBP pipelines. We found that the rank of a prediction model

is positively correlated with its corresponding KBP pipeline rank. However, there was

a wide range in correlation from 0.50 to 0.62. This demonstrates that high quality

predictions are correlated with high quality plans, but this result also indicates that a

prediction model that outperforms a competitor will not always generate better plans.

Additionally, the KBP plans generated by an optimization model that evaluated relative

differences (i.e., MeanRel and MaxRel) achieved higher rank order correlations than their

counterparts that evaluated absolute differences (i.e., MeanAbs and MaxAbs).

Table 6.4: Each KBP optimization model is compared to the predictions in terms of
median rank change and rank order correlation.

MeanAbs MaxAbs MeanRel MaxRel

Rank order correlation 0.53 0.50 0.62 0.59
Rank order P -value 0.019 0.030 0.005 0.008

The dose errors of predictions and KBP plans are shown in Figure 6.4. Two of the four

sets of KBP plans had a median dose error that was lower than the median dose error of

the predictions (2.79 Gy), implying that it is possible for optimization models to generate

dose distributions that more closely resemble the reference plan dose, compared to dose

predictions. These two models also achieved a significantly lower error (P ≤ 0.001) than

predictions. The MaxAbs model achieved the lowest median dose error (2.34 Gy).
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Figure 6.4: The distribution of dose error over all KBP-generated dose (n = 1900 points
in each box). Boxes indicate median and interquartile range (IQR). Whiskers extend to
the minimum of 1.5 times the IQR and the most extreme outlier.

6.3.2 DVH point differences

Figure 6.5 shows the DVH point differences between the reference dose and either the

predicted dose or KBP plan dose. In general, dose mimicking tends to produce a plan

dose that is significantly better than the dose it received as input from a dose prediction

model. In particular, the KBP plan dose is significantly better on 18 of the 23 DVH

points than the predicted dose (all OAR points and four target points). The five DVH

points where the plans were not significantly better are the three D95 points and two D99

points.

6.3.3 Expected criteria satisfaction

In Table 6.5, we compare the percentage of criteria that were satisfied by the reference

plans (n = 100), the predictions (n = 1900), the plans generated by each of the four dose

mimicking models (n = 4× 1900), and the plans generated by the top performing KBP

pipeline (n = 100). We use the term baselines to refer to the reference dose and dose

predictions collectively. The top performing KBP pipeline (denoted “Best” in Table 6.5)

was defined as the single pipeline (i.e., the combination of one dose prediction model

and one dose mimicking model) whose plans satisfied the most clinical criteria. Of all

dose mimicking models, the MaxRel and MeanAbs models generated plans that satisfied
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Figure 6.5: The distribution of DVH point differences between the reference dose and
each set of KBP-generated dose. Negative differences indicate cases where the KBP-
generated dose had a lower DVH points than the reference dose. The boxes indicate
median and IQR. Whiskers extend to the minimum of 1.5 times the IQR and the most
extreme outlier.

the fewest (69.8%) and most (72.9%) ROI clinical criteria, respectively. For comparison,

predictions only satisfied 66.2% of all clinical criteria, which was 3.5 percentage points

lower than the reference plans (69.7%). The best KBP pipeline, which used the MeanAbs

model and one of the 19 prediction models (discussed later), satisfied 77.0% of all ROI

clinical criteria.

In general, clinical criteria satisfaction varied across each ROI criterion. The brain-

stem, spinal cord, esophagus, and mandible criteria were each satisfied more than 85%

of the time across all the baselines and our dose mimicking models in Table 6.5. The
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right parotid, left parotid, and larynx were satisfied less than 40% of the time for the two

baselines. In contrast, each of our four KBP models generated a higher average criteria

satisfaction for these ROIs compared to the baselines. In fact, some were substantially

higher. For example, the average criteria satisfaction of the MeanAbs model on the lar-

ynx was 71.5%, compared to an average of 36.2% for the baselines. In aggregate over all

19 prediction models, the performance of the four dose mimicking model was comparable

or slightly worse than the reference dose in terms of criteria satisfaction in the targets.

However, the best KBP pipeline outperformed the baselines on all criteria.

Table 6.5: The percentage of clinical criteria satisfied in each set of KBP-generated dose.
Note that “Best” is defined as the top performing KBP pipeline that generated plans
that satisfied the most ROI clinical criteria. The highest percentage of satisfied criteria
is bolded in each row.

Baselines Dose mimicking models

Reference Prediction MeanAbs MaxAbs MeanRel MaxRel Best

OARs
Brainstem 96.6 97.3 100.0 99.5 100.0 98.5 100.0
Spinal cord 95.5 92.7 99.7 97.3 100.0 95.6 100.0
Right parotid 32.3 32.7 46.1 38.9 45.0 38.0 41.4
Left parotid 30.6 30.1 43.7 35.0 41.9 35.0 40.8
Esophagus 93.0 92.7 100.0 95.2 100.0 97.3 100.0
Larynx 37.7 34.7 71.5 44.9 58.8 44.6 67.9
Mandible 87.5 89.4 99.6 98.7 99.2 99.0 93.1

Targets
PTV56 91.2 85.8 83.3 91.8 84.1 84.6 96.7
PTV63 90.5 86.2 82.2 89.6 84.8 84.8 92.9
PTV70 64.0 45.7 37.2 51.6 40.1 47.7 66.0

All
OARs 65.5 65.1 77.1 70.6 75.3 70.2 74.5
Targets 79.4 68.7 63.3 74.2 65.3 68.8 82.8
ROIs 69.7 66.2 72.9 71.7 72.3 69.8 77.0

Figure 6.6 summarizes the clinical criteria that were satisfied by each of the 76 KBP

pipelines that we evaluated. The MeanAbs model generated plans that satisfied more

criteria than the other three optimization models for 16 of the 19 dose prediction models
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(see Figure 6.6(c)). Additionally, the pipelines that used better prediction models (i.e.,

dose score rank closer to 1) generally produced plans with higher criteria satisfaction.

Interestingly, the best performing KBP pipeline (the last column of Table 6.5) used the

dose prediction model that ranked 16th in terms of dose score. The spread in OAR criteria

satisfaction across all 19 models (55.4% to 82.1%) was lower than that of target criteria

satisfaction (24.5% to 89.7%), see Figure 6.6(a) and Figure 6.6(b), respectively. Note that

the poor performing KBP pipelines used the 12th, 13th, 17th, 18th, and 19th ranked dose

prediction models. Since the columns in Table 6.5 included all KBP pipelines, these poor

performing models contributed to low performance on the target criteria. In contrast,

many of the KBP pipelines that used the top ranked models prediction models clearly

performed much better on target criteria.

6.3.4 Theoretical analysis of dose mimicking models

The inverse planning model (6.2) is shown in model (6.3) in vector and matrix notation

following Chan et al.30

minimize
x

α̂′Cx

subject to Ax = b,

x ≥ 0.

(6.3)

The objective functions are the rows of matrix C and the objective function weights are

represented by the vector α̂. The decision variables, which include the fluence variables

(wb ∀b ∈ B) and auxiliary variables are represented by vector x. The SPG and auxiliary

constraints are encoded in the matrix A and vector b.

Table 6.6 presents the formulations of the four dose mimicking models and their re-

spective dual models. The positive and negative differences between optimized objective

values Cx and predicted objective values Cx̂ are represented by vectors σ and δ, re-

spectively. The max difference between the optimized and predicted objective values is

expressed as a scalar ζ. The dual variables of the dose mimicking models are denoted α
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and p. The vectors of all 0 and 1 are denoted by 0 and e, respectively. The symbol �

denotes element-wise multiplication of vectors and prime denotes the transpose operator.
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Figure 6.6: The percentage of (a) OAR, (b) Target, and (c) all ROI clinical criteria
that were satisfied by each KBP pipeline. The points indicate the percentage of satisfied
criteria. A dashed line indicates the percentage of criteria satisfied by reference plans.
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Next, we complete our theoretical analysis. By Proposition 5 from Chan et al.,30

it follows that an optimal decision vector x∗ from each dose mimicking model is also

optimal for the inverse planning model (6.3) with an optimal dual vector α∗ as objective

weights (i.e., x∗ is an optimal solution for model (6.3) when α̂ = α∗). This result means

that the solution to each dose mimicking model is also optimal to the inverse planning

model with a particular set of objective function weights.

Table 6.6: The four KBP optimization models used in this paper in matrix notation with
their corresponding dual models. Terms that follow colons indicate the dual variables for
that constraint.

KBP optimization model Dual model

MeanAbs

min
x,σ,δ

e′σ + εe′δ

s.t. Cx = Cx̂ + σ + δ : α

Ax = b : p

x ≥ 0

σ ≥ 0

δ ≤ 0

min
α,p

α′Cx̂− b′p

s.t. C′α ≥ A′p : x

α ≤ e : σ

α ≥ εe : δ

MaxAbs

min
x,ζ

ζ

s.t. Cx ≤ Cx̂ + ζe : α

Ax = b : p

x ≥ 0

min
α,p

α′Cx̂− b′p

s.t. C′α ≥ A′p : x

α′e = 1 : σ

α ≥ 0

MeanRel

min
x,σ,δ

e′σ + εe′δ

s.t. Cx = Cx̂� (e + σ + δ) : α

Ax = b : p

x ≥ 0

σ ≥ 0

δ ≤ 0

min
α,p

α′Cx̂− b′p

s.t. C′α ≥ A′p : x

α�Cx̂ ≤ e : σ

α�Cx̂ ≥ εe : δ

MaxRel

min
x,ζ

ζ

s.t. Cx ≤ Cx̂� (e + ζe) : α

Ax = b : p

x ≥ 0

min
α,p

α′Cx̂− b′p

s.t. C′α ≥ A′p : x

α′Cx̂ = 1 : σ

α ≥ 0
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6.3.5 Optimization metadata

In Table 6.7, we present metadata that was generated by each optimization model, which

assigned a different proportion of weight to the objectives for each group of ROIs (i.e.,

OARs, targets, optimization structures). The models that evaluate relative differences

(i.e., MeanRel and MaxRel) spread the proportion of weight relatively evenly between

the OAR and target objectives, but the other two models assigned the majority of the

weight to target objectives with no more than 0.018 weight to OARs. Additionally, the

optimization structures generally received the smallest proportion of weight with the

exception of the MaxAbs model, which assigned more weight to optimization structure

objectives (0.170) than OAR objectives (0.011). There is also a wide range in average

solve time of the models (222 seconds to 393 seconds). On average, the MaxAbs model

was the fastest.

Table 6.7: A summary of the metadata that each optimization model generated after
optimizing 1900 plans.

MeanAbs MaxAbs MeanRel MaxRel

Objective weight
OARs 0.018 0.011 0.554 0.417
Targets 0.976 0.819 0.418 0.569
Optimization 0.006 0.170 0.028 0.014

Solve time (s)
Average 389 222 367 393
First quartile 192 107 183 188
Third quartile 502 261 481 507

6.4 Discussion

Knowledge-based planning research is flourishing. However, optimization models for

KBP (e.g., dose mimicking) have received much less attention in the literature than dose

prediction models. In this paper, we developed four dose mimicking models and evaluated
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their performance with 19 different dose prediction models, which were inputs to the

optimization models. We showed that both the dose prediction model and optimization

model contributed to considerable variation in the quality of plans generated by the

corresponding KBP pipeline. Additionally, we conducted a theoretical investigation to

show that our dose mimicking models generate plans that are optimal for a multi-objective

inverse planning model with particular weights.

Our data and code is published at https://github.com/ababier/open-kbp-opt. to

enable others to reproduce our results, which meets the gold standard in reproducibility.51

Our data includes the first open dataset of predictions and reference plans to accompany

CT images. We hope that this effort produces a common resource and lowers the barriers

for future KBP optimization research, given that researchers must currently acquire their

own private datasets and develop in-house prediction models before they can start testing

new KBP optimization models.

Our open dataset contains the data for 100 patients who were treated with IMRT

and a sample of high quality dose predictions for those same patients. The dataset was

curated for the purpose of developing new fluence-based KBP optimization models that

use ROI masks, dose influence matrices, and a dose prediction. The dose predictions were

generated by 21 dose prediction models that were developed by an international group of

researchers, which provided a diverse sample of realistic inputs for a KBP optimization

model. Two of those prediction models (20th and 21th ranked model) were removed from

our analysis because their dose scores were low, which we elaborated on in Section 6.2.3.

For completeness, however, those 200 predictions are also available as part of our dataset.

We also performed a theoretical analysis to justify our dose mimicking models. Our

key theoretical finding was that dose mimicking and conventional inverse planning are

equivalent under certain specifications of the objective function weights. This allows

us to interpret previous weight estimation techniques30 through the more intuitive lens

of dose mimicking models. Finally, by connecting dose mimicking to inverse planning,

https://github.com/ababier/open-kbp-opt
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there is the potential to convert fully-automated KBP pipelines into semi-automated

pipelines. Specifically, we use dose mimicking to generate a high-quality plan with its

corresponding objective weights, which can be used in an inverse planning model (i.e.,

model (6.3)). This is advantageous because it enables human planners to improve the

quality of plans generated by KBP via a conventional inverse planning process. By

enabling this intuitive human interaction, we create a semi-automated KBP pipeline

that is aligned with a common belief that AI will augment, rather than replace, the

duties of healthcare practitioners1.

Evaluating the performance of optimization models using many different dose predic-

tions helps to identify interaction effects between these two stages of a KBP pipeline.11

For example, the 16th ranked model generated lower quality predictions (in terms of dose

error) than most of its competitors. However, when used in a KBP pipeline with the

right optimization model, in this case the MeanAbs model, it generated high quality

plans that achieved more clinical criteria than any other KBP pipeline. In other words,

the errors made by the 16th ranked model that contribute to its low prediction quality

were corrected by the KBP optimization model. Since these interaction effects contribute

to considerable variation in quality, it is important to evaluate KBP optimization models

across a diverse set of dose prediction models. Additionally, if we can understand what

types of prediction error are most highly correlated with KBP plan quality we could

propose better evaluation metrics to drive KBP prediction research towards making pre-

dictions that consistently translate into higher quality plans.

As in the original OpenKBP challenge, a limitation of this work is that we use syn-

thetic dose distributions (i.e., the reference dose) as a substitute for real clinical dose.

Although these dose distributions were subject to less quality assurance than clinical

plans, they were previously shown to be of similar quality.13 A second limitation of this

work is that the dose prediction models were developed with the goal of optimizing the

dose and DVH scores. There may be other scoring metrics that are better suited for
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developing a dose prediction model that excels in a KBP pipeline. This is a possible

direction for future research. Lastly, this work only covers a single site and treatment

modality. There is no guarantee that KBP optimization models that are developed with

this dataset can generalize to other sites or treatment modalities.

6.5 Conclusion

Our large international experiment demonstrates that optimization models can consis-

tently improve upon the predictions in a KBP pipeline. We also demonstrate that dose

mimicking models can be reformulated for inverse planning, which provides the means for

practitioners to improve upon KBP-generated plans via a familiar and intuitive process.

The code and data to reproduce these results was made available in an effort to encourage

more collaborative research in this field, which still has many unanswered questions.
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Conclusion

Incorporating artificial intelligence (AI) tools into radiotherapy is an effective means

for improving cancer care, however, development of these tools is impeded by a lack

of standardized metrics and datasets. In this thesis, we address these problems and

improve upon existing AI tools for knowledge-based planning (KBP). Our tools involve

the first implementation of computer vision in a KBP pipeline and improvements to

existing KBP optimization models. We also develop standardized metrics and datasets

for KBP research that advance innovation and support future reproducible research.

In this chapter, we present a summary of our contributions, future directions for KBP

research, and final remarks on the impact of this work.

7.1 Contributions

Throughout this thesis we made made several contributions that were often improved

upon in successive chapters. In this section, we highlight the five main contributions of

this thesis and indicate the chapters where these contributions were made.

In Chapters 2 and 3, we developed the first dose prediction models that use

generative adversarial networks. These models were among the first dose prediction

models that eschewed the paradigms of site-specific feature engineering and predicting

123
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low-dimensional representations of dose distributions. However, like all dose prediction

models our GAN models only provide an intermediate step (i.e., the dose prediction) in

a full KBP pipeline.

In Chapter 2 and 3, we also implemented the first KBP pipelines that use

computer vision and optimization. These were the first studies that compared the

performance of computer vision models in a full KBP pipeline to several baselines from

the extent literature. Our dose prediction models outperformed the baseline models on

several clinical metrics. However, these models were all developed on a private dataset

with institution-specific evaluation metrics, which prevents reproducible research.

In Chapter 4, we garnered widespread adoption of standardized metrics for

KBP research. This was accomplished by organizing a large competition that tasked

participants to develop the best dose prediction model. The models were evaluated using

standardized metrics that can be used to compare models developed in the future to a

large set of baselines models.

In Chapter 4 and 6, we published the first open datasets for KBP research.

Following the OpenKBP Grand Challenge, we published the corresponding datasets that

we used to enable anyone to contribute to KBP research. A dataset was also released

for plan optimization research. This contribution gave the field its first public dataset to

encourage reproducible research on the full KBP pipeline.

In Chapter 5 and 6, we identified interaction effects between the stages

of KBP that affect performance. Although the optimization model was largely held

constant throughout this thesis, we found that the choice of both the prediction and the

optimization model can contribute to considerable variation in quality. After making this

observation we proposed a new set of optimization models and demonstrated that the

two dominant KBP optimization models (i.e., inverse optimization and dose mimicking)

are actually equivalent under certain conditions.



Chapter 7. Conclusion 125

7.2 Future research directions

There are still several underexplored areas in KBP research. In this section, we highlight

five major gaps in the KBP literature and propose future research directions for the field.

7.2.1 KBP plan optimization models

We need to improve KBP plan optimization methods to get better utility out of existing

dose prediction models. Most of the attention in this field has been directed at improving

dose prediction models, and the improvements to those models are becoming increasingly

incremental. Although conventional plan optimization methods have also been well re-

searched,26 it is non-trivial to adapt them for KBP plan optimization. For example, there

are unpredictable interaction effects between dose prediction and KBP plan optimization

models,11 which suggests that KBP plan optimization models may need to be tailored

to perform well with specific dose prediction methods. Other efforts could be directed

at exploring how to leverage the combined power of multiple dose predictions in a KBP

optimization model, which is an idea that has already been shown to outperform models

that consider only a single dose prediction.12

7.2.2 Extensions to other sites and modalities

Another future direction is the translation of knowledge-based planning approaches to

new types of cancer and modalities. About 70% of all KBP research is conducted for

prostate, lung, or head-and-neck cancers; and the majority of those studies use inten-

sity modulated radiotherapy or volumetric modulated arc therapy.79 This is a problem

because not all KBP models will perform consistently across all cancer types and modal-

ities.75 Some KBP models have also been developed for other modalities like Gamma

Knife,67 brachytherapy,86 and proton therapy.39 However, there have been limited efforts

to tailor KBP methods to the unique attributes of those modalities. For example, proton
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therapy is generally planned via robust optimization 101 to account for uncertainties in the

treatment (e.g., range uncertainty),100 but approaches for incorporating the elements of

robust optimization into knowledge-based planning for proton therapy have only recently

been considered.42

7.2.3 Improving KBP performance on small datasets

Knowledge-based planning is also a field that will likely be limited by small datasets for

the foreseeable future. Although more clinical data may become available through efforts

like federated learning,89 the plans that oncologists approve are based on ever chang-

ing clincian-specific protocols that are driven by new scientific evidence and institution-

specific standards. These changing protocols will continue to limit the pool of acceptable

training data, which restricts the power of machine learning models in this field. There

are three approaches that could address this challenge: (i) models that can learn to adjust

to the new planning protocols without new data,9 (ii) use of active learning to identify

small subsets of data that can be used to retrain existing dose prediction methods to

better adhere to new protocols,72 or (iii) adopt more tools that enable semi-automated

planning that can leverage the expertise of trained clinicians to adjust KBP-generated

plans.114

7.2.4 Predicting fluence maps

Another interesting development is the rise in methods that predict fluence-based plans

directly. Those methods bypass the optimization stage in KBP pipelines by predicting the

decision variables of the optimization model (i.e., they predict beamlet intensities within

a fluence map).69;105 To date, these techniques perform poorly on complex sites like

head-and-neck, but there are several areas for improvement (e.g., model architecture).65

Models that predict fluence-based plans are also promising because they circumvent the

unpredictable interaction effects between the dose prediction and plan optimization stages
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from the more common predict-then-optimize KBP pipeline.

7.2.5 Collaborating with open data

Finally, we should promote more open and collaborative research to make efficient progress

like other successful AI-driven fields. Currently, most methods are developed on private

datasets with institution specific metrics that leads to two major problems. First, do-

ing fair comparisons between competing models in the literature that are developed and

tested on different datasets is virtually impossible, which makes it difficult to track the

meaningful improvements to models in our field. Second, there are large barriers in many

areas of this field where only researchers with access to large private datasets can con-

tribute. These issues can be addressed by simply publishing more open datasets for KBP

research. Fortunately, there are small steps being made to improve access to data. For

example, the Task Group 263 report from American Association of Physicists in Medicine

introduces the concept of standardized nomenclature,73 which should enable big data ini-

tiatives like the pooling of clinical data from several institutions. Such initiatives will

reduce the number of issues (e.g., inconsistent nomenclature) associated with the multi-

institutional data sharing efforts that are critical for improving the rate of innovation in

knowledge-based planning research.

7.3 Final remarks

Overall, this thesis improves our understanding of KBP techniques and promotes more

collaboration within our research community. We hope that this work encourages the

field to do more reproducible research that produces useful AI tools for the radiotherapy

treatment planning process. Although we are optimistic about the clinical impact of

KBP, we also hope more attention will be given to developing semi-automated tools that

encourage clinicians to work with KBP rather than relying on it as an infallible black-box.
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Appendix A

Supplement to Chapter 2

A.1 Network architecture

The general network architecture was adapted from Isola et al. 57 . Contoured CT slices

were used as input to the generator as 3-channel, 128 × 128 images. We used a U-net

architecture, where the generator was comprised of an encoder and a decoder stage. We

used 4 × 4 2D convolutions with stride 2 and padding 1. Each convolution layer was

followed by a leaky ReLU and batch normalization. Deconvolution layers were followed

by 50% dropout, ReLU, and batch normalization.

The encoder consisted of four downsampling layers. The first generated 64 channels,

and each subsequent layer downsampled by a factor of 2. This was followed by 2 bottle-

neck layers, before the data was then passed through 4 upsampling layers. The output

of each downsample layer was concatenated to the input of the corresponding upsample

layer. The final output was a 3-channel, 128× 128 slice.

The decoder consisted of five convolution layers, where the first four each downsample

the output by 2. The fifth, and last layer, mapped to a scalar output. Once again, we

applied batch normalization and leaky ReLU after the first four layers. The final layer

was passed through sigmoid activation.
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A.2 Random forest architecture

The random forest used ten custom features outlined in Table A.2 to predict the dose

delivered to each voxel in the patient. The RF was trained with ten trees, and default

settings with the randomForestRegressor from scikit-learn.

Table A.1: The ten features used in the RF to predict the dose for any voxel.

Feature Description

Structure Structure that the voxel is classified as
y-coordinate Voxel’s positions on the y-axis in a slice
z-coordinate Plane of voxel’s slice

Distance to larynx Shortest path between voxel and the surface of the larynx
Distance to esophagus Shortest path between voxel and the surface of the esophagus

Distance to limPostNeck Shortest path between voxel the surface of the limPostNeck
Distance to PTV56 Shortest path between voxel and the surface of the PTV56
Distance to PTV63 Shortest path between voxel and the the surface of PTV63
Distance to PTV70 Shortest path between voxel and the the surface of PTV70

Influence Sum of influence matrix elements for the voxel
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Supplement to Chapter 3

The generator and discriminator architectures for the 2D-dose and 3D-dose models are

summarized in Table B.1 and B.2, respectively.

Table B.1: Overview of the generator architecture. ‘BN’ refers to batch normalization;
‘LR’, ‘R’, and ‘Tanh’ refer to Leaky ReLU (0.2 slope), ReLU, and Tanh activations,
respectively; and ‘D’ refers to dropout.

Layer
Concatenate 2D-dose 3D-dose

Processing
input with Blocks Input size Blocks Input size

1 — Conv2d 128x128x3 Conv3d 128x128x128x3 BN-LR
2 — Conv2d 64x64x64 Conv3d 64x64x64x64 BN-LR
3 — Conv2d 32x32x128 Conv3d 32x32x32x128 BN-LR
4 — Conv2d 16x16x256 Conv3d 16x 16x16x256 BN-LR
5 — Conv2d 8x8x512 Conv3d 8x8x8x512 BN-LR
6 — Conv2d 4x4x512 Conv3d 4x4x4x512 BN-LR
7 — Conv2d 2x2x512 Conv3d 2x2x2x512 LR
8 — Deconv2d 4x4x512 Deconv3d 4x4x4x512 BN-R
9 layer 6 output Deconv2d 8x8x1024 Deconv3d 8x8x8x1024 BN-D-R
10 layer 5 output Deconv2d 16x16x1024 Deconv3d 16x16x16x1024 BN-D-R
11 layer 4 output Deconv2d 32x32x1024 Deconv3d 32x32x32x1024 BN-R
12 layer 3 output Deconv2d 64x64x512 Deconv3d 64x64x64x512 BN-R
13 layer 2 output Deconv2d 128x128x256 Deconv3d 128x128x128x256 BN-R
14 layer 1 output Deconv2d 128x128x128 Deconv3d 128x128x128x128 Tanh

Output — — 128x128x1 — 128x128x128x1 —
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Table B.2: Overview of the discriminator architecture. ‘BN’ refers to batch normalization
while ‘LR’ and ‘Sig’ refer to Leaky ReLU (0.2 slope) and sigmoid activations, respectively.

Layer
2D-dose 3D-dose

Processing
Blocks Input size Blocks Input size

1 Conv2d 128x128x4 Conv3d 128x128x128x4 LR
2 Conv2d 64x64x64 Conv3d 64x64x64x64 BN-LR
3 Conv2d 32x32x128 Conv3d 32x32x32x128 BN-LR
4 Conv2d 16x16x256 Conv3d 16x16x16x256 Sig

Output — 1 — 1 —
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Supplement to Chapter 4

C.1 Data Format

The data for OpenKBP is structured to facilitate the development and validation of dose

prediction models. In this section, we describe how the data is stored and formatted.

C.1.1 Summary of data

The data for each patient is provided as comma-separated values (CSV) files, which are

separated into directories with the corresponding patient number. The files for each

patient include:

dose.csv the full 3D dose distribution that was used to treat the patient (in units of

Gy).

ct.csv grey-scale images of the patient prior to treatment (in Hounsfield units). There

is a mix of 12-bit and 16-bit formats, and we recommend clipping the CT values

to be between 0 and 4095 (inclusive) to convert them all to 12-bit number formats,

which is the more common convention.

voxels.csv The dimensions of the patient voxels (in units of mm).
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possible dose mask.csv a mask of voxels that can receive dose (i.e., the dose will

always be zero where this mask is zero).

Structure masks a mask that labels any voxel that is contained in the respective struc-

ture. The tensor for each structure is stored as a CSV file under its respective

structure name. Only structures that were contoured in the patient have CSV files.

Brainstem.csv mask of brainstem voxels.

SpinalCord.csv mask of spinal cord voxels.

RightParotid.csv mask of right parotid voxels.

LeftParotid.csv mask of left parotid voxels.

Esophagus.csv mask of esophagus voxels.

Larynx.csv mask of larynx voxels.

Mandible.csv mask of mandible voxels.

PTV56.csv mask of PTV56 voxels.

PTV63.csv mask of PTV63 voxels.

PTV70.csv mask of PTV70 voxels.

C.1.2 Data format

Other than the file voxels.csv, which contains a list of only three numbers, all of the CSV

data in OpenKBP is saved as sparse tensors (i.e., only non-zero values are stored). The

advantage of this sparse format, compared to dense tensors (i.e., all values are stored),

is that the data size is smaller and thus loads into memory faster, which leads to faster

model training. The disadvantage, is that working with sparse tensors is less intuitive

than working with dense tensors. In general, we recommend converting the data into

dense tensors once it is loaded.
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All of the sparse tensors are stored in CSV files with two columns. The first column

contains a list of indices. The second column contains either a list of values for the

corresponding indices, or it contains no values if the tensor is a mask (i.e., where all

corresponding values are 1). All indices are stored as single numbers that unravel into a

3D (i.e., x-y-z) coordinate system via C-contiguous ordering. We provide Python code in

our repository to load the data as dense tensors.

C.2 Surveys

In this section, we present the two mandatory surveys that we released during the Chal-

lenge. In each survey, respondents answered questions either by writing free-text or by

selecting option(s) from a list.

Mandatory questions are marked with an asterisk (*).

C.2.1 Registration

All participants completed the following two part survey to register for OpenKBP.

C.2.1.1 Part 1: Professional information

Please complete this form to be given access to the OpenKBP competition.

First Name*

Short-answer text

Last Name*

Short-answer text

E-mail (must be the same address used for your CodaLab account)*

Short-answer text
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Institution name without acronyms (University, Hospital, Company, etc.)*

Short-answer text

Department (Computer Science, Medical Biophysics, Radiation Oncology,

Machine Learning, Industrial Engineering, etc.)*

Short-answer text

Primary research area*

© Medical Physics

© Machine Learning

© Optimization

© Other...

Have you done research in knowledge-based planning in the past?*

© Yes

© No

Position*

© Student

© Professor

© Post doctoral fellow

© Medical physicist

© Radiation oncologist

© Industry research

© Other...
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C.2.1.2 Part 2: Equity, diversity, and inclusion

To help us learn how to support the diversification of researchers in the OpenKBP Grand

Challenge, we ask that all applicants complete an equity survey at the time of their reg-

istration. Equity is one of our competition’s goals. We seek to remove barriers to par-

ticipation for all people including women, LGBTQ individuals, persons with disabilities,

Indigenous People and racialized persons and persons of colour.

Your participation is voluntary and your responses are confidential. We hope you will

choose to answer these questions to help us bring you an even better competition next

time. The information we receive from your responses will be used to better understand

who has access to the competition, to identify barriers that may exist and areas to develop

and/or improve in our rules and procedure to achieve more diversity and equity in the

application process. All responses will be kept strictly confidential and will be reported

only in aggregate so that you cannot be personally identified by your characteristics.

Do you self-identify as (choose all that apply):

� Man

� Women

� Transgender

� Prefer not to say

� Other...

Please indicate the racial or ethnic groups with which you identify (check all

that apply):

� African American/Black

� Asian American/Asian

� Hispanic/Latinx

� Middle Eastern/North African
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� Native American/Indigenous

� Native Hawaiian/Other Pacific Islander

� White

� Prefer not to say

� Other...

Do you identify as a person with a disability? This may mean that either you:

(i) have a long-term or recurring condition or health problem which limits

the kind or amount of work you can do in the workplace; OR (ii) feel that you

may be perceived as limited in the kind or amount of work which you can do

because of a physical, mental, sensory, psychiatric, or learning impairment.

© Yes, I identify as a person with a disability

© No, I do not identify as a person with a disability

© Prefer not to say

C.2.2 Model summary

Every team that competed in the testing phase of the Challenge also completed the

following one part survey to summarize their model.

C.2.2.1 Model survey

Please describe your final dose prediction model using this survey. We will consider your

submission complete only if this survey is submitted. Any submission made on CodaLab

that is not associated with a survey response will be considered void, and it will not be

ranked in the final leaderboard. We may also reach out to you for more information.

This survey includes 5 long answer questions, and we expect the cumulative word

count of your responses to be about 350 words. We provide an estimated word count
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for your response to each question. These estimates are only a guide and you may

provide more detail where you see fit. Please reach out if you have any questions or need

clarification.

For teams, only one team member should submit this form.

Username on CodaLab*

Short-answer text

Team Name on CodaLab (enter N/A if you have no team)*

Short-answer text

Broadly speaking, how would you describe your model?*

© Linear regression

© Random forest

© Neural network

© Gradient boosted trees

© Support vector machines

© Other...

Briefly describe your approach. (∼ 150 words)*

Long-answer text

What would you say is the biggest contributing factor(s) to your models

efficacy? (∼ 100 words)*

Long-answer text

Did you use transfer learning?*

© Yes

© No
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Please describe any data augmentation methods that you used (e.g., rotations,

private clinical dataset)? (∼ 50 words)*

Long-answer text

Briefly describe your loss function. Did you use radiation therapy specific

metrics in your loss function (e.g., max dose to PTV)? (∼ 50 words)*

Long-answer text

Briefly describe the hardware (e.g., GPU model, CPU model) or cloud re-

sources (e.g., Google Colab) that you used. (∼ 25 words)*

Long-answer text

Please leave any other comments about your process here.

Long-answer text

Provide a link to the code repository that will recreate your model. We will

include links to all the provided repositories from our existing OpenKBP

Github to enable new users to build on a library of existing models. You may

also provide a repository link at a later date, but it is not required.

Short-answer text
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